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1. INTRODUCTION 

a. Statement of the Problem 

A major problem in many meteorological studies is the lack of 

sounding data over time intervals less than 12 h. Several studies have 

shown that the conventional 12-h rawinsonde network does not adequately 

define large temporal variations in synoptic variables over short time 

periods that are often related to sub-synoptic systems and severe 

weather occurrences. Nevertheless, because of the type of data avail- 

able, several methods are utilized to approximate or estimate values 

of synoptic variables for times within bracketing rawinsonde obser- 

vations. 

One common method employed by meteorologists is a linear time 

interpolation of atmospheric variables through a 12-h period. This 

technique has been used widely in trajectory models and more recently 

in research to determine the capabilities and limitations of satellite 

sounding data since simultaneous raob and satellite data were not 

available (Moyer et al., 1978). -- In forecast studies, a linear extrap- 

olation of systems in space is often utilized to account for atmos- 

pheric structure over a 12-h period beyond a sounding time. While 

different from a linear interpolation, extrapolation techniques employ 

the same general principle. 

While such methods serve at least as an approximation to atmos- 

pheric conditions for times within the regular 12-h sounding obser- 

vations, they are incapable of resolving rapid temporal changes in 

synoptic variables that are largely responsible for the development of 

thunderstorms and severe weather occurrences. Since the life cycles 

of these sub-synoptic systems are much shorter than 12 h, often they 

are unresolved using 12-h data. Thus, changes in the structure of the 

atmosphere not represented by a linear interpolation based upon sound- 

ing observations 12 h apart could be very important in the development 
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and dissipation of convective storms and severe weather. These 

changes are the subject of this research. 

b. Objectives 

The main objective of this research is to examine the information 

content in rawinsonde data taken at 3-h intervals that is not con- 

tained in data obtained by assuming synoptic variables to change 

linearly through a 12-h period. 

Specific objectives include: 

(1) Examination of differences between variables computed from 

3-h measured data and like variables interpolated linearly 

from 12-h data over 3-, 6-, and 9-h intervals. 

(2) Identify systematic patterns in these differences or non- 

linear changes, and examine their spatial and temporal 

continuity. 

(3) Establish relationships between these differences or non- 

linear changes, synoptic features, and radar-observed con- 

vection. 

(4) Compare the magnitudes of nonlinear changes in synoptic 

variables over 3-, 6-, and 9-h intervals with observed 

changes in like variables over the same time intervals to 

determine the relative significance of nonlinear changes with 

respect to observed changes. 

C. Previous Studies 

Convective systems are of major concern to meteorologists since 

these systems are largely responsible for many severe weather occur- 

rences (Ninomyia, 1971). A limiting factor in the understanding 

of these sub-synoptic systems is the 12-h spacing of upper air rawin- 

sonde soundings. 

As mentioned above, because of the type of data available, methods 

are employed by meteorologists to approximate the structure of the 
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atmosphere for times within the 12-h period between soundings. Horn 

et al. (1976) used a linear time interpolation between bracketing raobs -- 
to compare geostrophic winds derived from satellites to those obtained 

from radiosonde data. Moyer et al. (1978) found such a technique to -- 
be justified since results demonstrated that weighted means of raobs 

better approximated satellite profiles than did either of the bracket- 

ing raob profiles. However, it is obvious that major weather changes 

take place over short intervals and that such changes often behave in 

a nonlinear fashion. This study will focus on the information content 

essentially lost by assuming that synoptic variables change linearly 

through a 12-h period, and on the nonlinear variability of these 

variables in relation to synoptic features and weather. 

Several studies have shown that the conventional 12-h upper-air 

network is inadequate to describe convective processes whose life 

cycles are much shorter than 12 h. House (1960) demonstrated that the 

12-h spacing between rawinsonde observations could not detect the 

processes relevant to the production, propagation, and dissipation of 

atmospheric phenomena associated with squall lines. Such processes 

could be more accurately defined through the use of 6-h measurements. 

Deficiencies in observed data in thunderstorm areas also were pointed 

out by Fujita and Brown (1960). Fankhauser (1969) identified meso- 

scale systems moving through the National Severe Storms Laboratory 

(NSSL) network and concluded that atmospheric structure in areas of 

thunderstorms could be resolved from rawinsonde data measured over 

1.5-h intervals. 

Many sub-synoptic systems important in the development of severe 

weather are related to rapid temporal changes in the observed struc- 

ture of the atmosphere. Using data collected at 90-min intervals, 

Kreitzberg and Brown (1970) studied mesoscale circulation in a 

continental occlusion. They showed that variability in the atmosphere 

is closely related to mesoscale features within the large-scale system. 

Wilson and Scoggins (1976) measured the variability of some basic 

synoptic variables by computing cumulative frequency distributions of 

changes in these variables for intervals of 3, 6, 9, and 12 h. They 
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found that 30 to 60% of a total change observed over a 12-h period 

occurred within a 3-h interval, and that 3-h data could more accurately 

identify rapid temporal changes in atmospheric structure. Direct 

measurement of this variability is lost between 12-h synoptic rawin- 

sonde runs. The magnitudes of some 3-h changes even exceeded those of 

12-h changes representing extreme variability of the atmosphere not 

measured using 12-h data. They also found that many of these changes 

correlated well in space with radar-observed convection and suggested 

that the presence of sub-synoptic systems caused variability of the 

atmosphere over periods less than 12 h. 

McCown and Scoggins (1977) computed gradient fields of geopoten- 

tial height, temperature, wind speed, and mixing ratio, and applied 

statistical methods to determine changes in gradient patterns as- 

sociated with cumulus convection. Large variations in these patterns 

were found to occur over 3-h periods, possibly in relation to sub- 

synoptic scale disturbances. The largest gradients occurred along 

frontal zones and in areas of convective activity, indicating rapid 

changes in synoptic variables over short time periods in these 

regions. Similar results had been reported by Miller (1969). Reap 

and Alaka (1969) found severe storm activity along lines of maximum 

dew point gradients. 

Large variations in the kinematic structure of the atmosphere are 

important in describing atmospheric processes which release instability 

necessary for the development of thunderstorms. Overall and Scoggins 

(1975) emphasized the importance of 3-h measurements in detecting 

changes in vertical motions. The rate of change of vertical motion 

was found to be as large as 8 cm s -1 h-l from data taken at 3-h inter- 

vals, while 12-h observations displayed a maximum rate of change of 

only 2 cm s -1 - h' . The greatest changes occurred along frontal zones 

and were related to short wave systems moving through the network. 

Read and Scoggins (1977) indicated the presence of significant changes 

in terms of the vorticity equation and in stability parameters over 

3-h intervals in response to short wave development. Changes also 

were observed prior to convective activity. Results indicated that 
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important development of circulation systems and instability occur on 

a time scale much less than 12 h, and that kinematic processes are 

important in the release of instability in the form of thunderstorms. 

Many of these processes could not be described accurately with the 

use of 12-h data. 



2. DATA 

a. Soundings‘ 

The data for this research consisted of upper air soundings taken 

during the fourth Atmospheric Variability Experiment (AVE IV) which was 

conducted by the National Aeronautics and Space Administration (NASA). 

Soundings were taken at forty-two upper air stations over the central 

and eastern portions of the United States (Fig. 1)* at the following 

nine times: 0000, 0600, 1200, 1500, 1800, and 2100 GMT on 24 April, 

and 0000, 0600, and 1200 GMT on 25 April. 

To supplement the rawinsonde data, surface data were obtained from 

the National Climatic Center. Locations of the surface stations used 

within the AVE IV area are shown in Fig. 2. 

The data reduction procedure used in processing the AVE IV data 

was designed to obtain the highest possible accuracy for the rawinsonde 

soundings. Winds were calculated at 30-s intervals and thermodynamic 

readings were taken at each pressure contact. Estimates of the RMS 

errors of the thermodynamic quantities and RMS vector errors in wind 

speed are presented in Table 1 (Fuelberg, 1974). 

All raw data for the AVE IV experiment were keypunched and checked 

carefully for errors by computer before soundings were calculated. The 

soundings were then rechecked and corrections made as necessary. 

b. Manually Digitized Radar (MDR) 

In order to determine accurately the location and intensity of 

radar-observed convection during AVE IV, Manually Digitized Radar (MDR) 

data were obtained from the Techniques Development Laboratory of the 

National Oceanic and Atmospheric Administration (NOAA). The MDR grid 

network is shown in Fig. 3. Each MDR block is approximately 83 km 

on a side. 

The MDR values, which are coded with a single digit from 1 to 9, 

represent area1 coverage and echo intensity within each block. Three- 

*Station names are given in Appendix I. 
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rig. 1, Location of rawinsonde stations for P,VE IV. 
(after Read and Scoggins, 1977). 
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Fig. 2. Location of surface stations participating 
in the AVE JV experiment. (after Read and Scoggins,l977). 

7 



Table 1. RMS errors in the rawinsonde data (after Fuelberg, 1974). 

a. Thermodynamic 

Quantity, variable Approximate RMS error 

Temperature 1°C 

Pressure 1.3 mb from surface to 400 mb; 
1.1 mb from 400 to 100 mb 

Humidity 10 percent 

Pressure Altitude 10 gpm at 500 mb; 
20 gpm at 300 mb; 
50 gpm at 50 mb 

b. Wind 

Elevation Angle Elevation 
Level 40" 20" 40" 20" 

RMS Direction Error RMS Speed Error 

700 mb 1.8" 3.8" 0.5 ms -1 1.0 -1 ms 

500 mb 2.5" 5.6" 0.8 ms -1 2.0 -1 ms 

300 mb 3.1" 7.5" 1.0 ms-' 3.8 -1 ms 

100 mb 6.2" 15.0" 2.0 ms -1 5.7 ms -1 
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27 
26 

Manually Digitized Radar (MDR) grid network, 
(after Scott and Scoggins, 1977). 



hour composites of radar data centered on the rawinsonde observation 

times were prepared. The maximum observed MDR value in each block over 

the 3-h period was used. Table 2 provides a more detailed description 

of the MDR codes (Foster and Reap, 1973). 
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Table 2. Description of Manually Digitized Radar (MDR) Code. 
(After Foster and Reap, 1973) 

Maximum Coverage Maximum Intensity 
Code No. Observed In Box 

VI Pl Values 
Rainfall Category 

Rate (in./hr.) 

9 5 or 6 

No Echoes 

1 

2 

2 

3 

3 

4 

4 

5 or 6 

Any VIP 1 >.l Weak 

r50% of VIP 2 .l- .5 Moderate 

>50% of VIP 2 .5-1.0 Moderate 

550% of VIP 3 1.0-2.0 

>50% of VIP 3 1.0-2.0 

~50% of VIP 3 and 4 1.0-2.0 Very Strong 

>50% of VIP 3 and 4 1.0-2.0 Very Strong 

550% of VIP 3,4,5, >2.0 Intense or 
and 6 Extreme 

>50% of VIP 3,4,5, >2.0 Intense or 
and 6 Extreme 

Strong 

Strong 

1 Video Integrator Processor 
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3. SYNOPTIC CONDITIONS 

Analysis of the surface, 850-, 700-, 500-, and 300-mb synoptic 

charts for 1200 GMT on 24 April 1975 through 0000 GMT on April 25 

appear in Figs. 4 through 8 inclusive. Frontal positions are presented 

on the surface charts. 

The weather situation in AVE IV was characterized by a mass of 

cold polar air moving slowly across the northern United States and a 

large surge of warm moist air flcwing over the eastern states from 

the Gulf of Mexico. The contrasting air masses were separated by a 

quasi-stationary polar front that extended from a cyclone located over 

northern Michigan at the beginning of the experiment to a secondary 

cyclone over Kansas and from there southwestward into Texas. A warm 

front stretched from the low in Michigan eastward to the mid-Atlantic 

coast. The primary cyclone moved northeastward to the Gulf of St. 

Lawrence during the experiment, while the secondary low moved eastward 

to Kentucky. 

The middle and upper tropospheric flow pattern was basically zonal 

throughout the experiment. Two short waves moved through the zonal 

flow which generated severe weather in the form of two squall lines. 

At 1200 GMT on April 25 moderately strong thunderstorms formed in 

the Ohio Valley in conjunction with the first short wave and the slight 

southeastward movement of the cold front. At 1800 GMT, these thunder- 

storms began to intensify rapidly and by 2100 GMT a strong line with 

tops to 15 km had formed from central Tennessee to West Virginia. 

These storms dissipated rapidly within the following 3-h period. 

The second area of thunderstorms observed at 0000 GMT on 24 April 

was associated with the surface cyclone in Kansas and a warm front 

stretching from the low into northern Missouri. Activity decreased in 

intensity between 1200 and 1500 GMT due to an upper-level ridge and 

moved slightly to the southeast. At 2100 GMT the cyclone began in- 

tensifying with the eastward movement of another short wave, and a 

squall line developed by 0000 GMT on 25 April that stretched from 

central Oklahoma into southwest Missouri with tops over 18 km. This 
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Surface 

Fig. 4. Synoptic charts for 1200 GMT, 24 April 1975. 
(after Fucik and Turner, 1975). 
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850 mb 

700 mb 

Fig. 4. 
(Continued) 
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Fig. 4. (Continued) 
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Surface 

Fig. 5. Synoptic charts for 1500 GMT, 24 April 1975. 
(after Fucik and Turner, 1975). 
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Fig. 6. Synoptic charts for 1800 GMT, 24 April 1975. 
(after Fucik and Turner, 1975). 
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Surface 

Fig. 7. Synoptic charts for 2100 GMT, 24 April 1975. 
(after Fucik and Turner, 1975). 
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line of thunderstorms intensified rapidly during the next 6-h period 

and produced severe convective activity in the form of large hail, 

damaging winds, and tornadoes. 

By the end of the AVE IV experiment at 1200 GMT on April 25, this 

squall line was moving through the southeastern portion of the United 

States. A trough was developing in the upper-level flow over the 

northern plains and polar air was replacing the maritime tropical 

air in the Ohio Valley and southeastern United States. 
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4. DATA ANALYSIS 

a. Gridding of Data 

An objective analysis scheme developed by Barnes (1964) was used 

to interpolate the rawinsonde (every25 mb) and surface data to an 

18x18 grid which is shown in Fig. 9. The Barnes' Technique is based 

upon the assumption that atmospheric variables may be represented as 

a sum of an infinite series of waves. Values of a variable are 

interpolated to grid points forming a first guess field, and successive 

corrections are then applied to the gridded field on following itera- 

tions. A grid spacing of approximately 158 km was used. This spacing 

is believed to provide the best horizontal resolution possible from 

randomly spaced rawinsonde stations (Barr et al., 1971). -- 
A radius of influence of three grid distances from each rawinsonde 

station was employed to ensure adequate data for interpolation to grid 

points and to include major sub-synoptic features. A scan radius of 

only two grid distances was used for surface data due to the closer 

station spacing. Four iterations were performed on the gridded data 

and the resulting fields were smoothed by a process suggested by 

Shuman (1957) to further remove unresolvable features from the gridded 

fields. 

b. Definition of Differences and the Nonlinear Coefficient 

A 12-h time period from 1200 GMT on 24 April to 0000 GMT on 25 

April 1975 was selected within which sounding data were available 

every 3 h. Values of selected variables were obtained from these 

sounding data for each grid point at 50-mb intervals from 900 (lowest 

level not intersecting ground) to 100 mb. The 12-h change for each 

variable was calculated by a forward time difference. This change 

was then linearly interpolated over 3-, 6-, and 9-h intervals to obtain 

interpolated values of the variables at each 3-h interval. Differences 

between measured and interpolated quantities were then computed by the 

relation: 
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Fig. 9. Grid used for numerical computations. 

AX’ = xt - [b (xl2 - x0) + x01 (1) 

where xt is the measured value of the variable at time t (3, 6, or 9h),, 

xl2 is the value of the variable at the end of the 12-h interval, and 

xO is the value at the initial time. 

The computed differences between measured and interpolated values 

represent the amount of change in a variable over a time interval, at, 

that is not accounted for by a linear change. AX’, then, can be 

interpreted as a nonlinear change in the variable, x, over a time 

interval. 
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In order to determine the significance of these nonlinear changes 

over 3-, 6-, and 9-h intervals within the 12-h period between regular 

synoptic observations , a coefficient of nonlinearity is defined as: 

where AxM is the measured change in a variable over a time interval of 

3, 6, or 9.h, and Ax' is the nonlinear change or the difference between 

the measured change and linear change,Axr over the identical time 

intervals. All variables are shown graphically in Fig. 10. Substi- 

tution of Eq. (1) into Eq. (2) yields: 

t 

C= 
Xt - xo - h7 (xl2 - x0)'. x loo 

Xt - xo 

= [l - 
b 092 - x0) 

Xt _ x -1 x 100. 
0 

(3) 

Since the initial and final values at each point are constant 

throughout the interpolation period, Eq. (3) can be expressed in the 

form: 

c= v - t Kl ] x 100 = [1 t K3 
12(xt-K2) - -1 x 100 

xt-K2 
(4) 

where K, = (x12-x0), K2=x0, and K3=K1/12. The nonlinear coefficient, 

then, is a function of the time interval (3, 6, or 9 h) and the ob- 

served value of the variable at time t. The coefficient of nonline- 

arity represents the percentage of a change in a variable over a time 

interval that is not accounted for by a linear interpolation. 
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Fig. 10. Schematic diagram showing measured (AxId), 1 inear (AX,), and 

nonlinear (AX') changes of a variable over a time interval 

(At> within the 12-h interval between rawi nsonde soundings. 

C. Variables Considered and Methods of Computation 

Both measured and calculated variables are considered in this 

research. The derived variables are kinematic and stability-related. 

1) Basic variables 

Basic variables include temperature, mixing ratio, geopotential 

height, wind speed and direction, and the u and v wind components. 

Values of these variables were obtained from sounding data. 
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2) Kinematic variables 

Kinematic variables include horizontal wind divergence, vertical 

motion, relative vorticity, and the advection of vorticity and 

temperature. 

The horizontal wind divergence not accounted for by linear 

interpolation can be expressed as: 

(5) 

where uM and vM are the components of the measured vector wind, and 

UI and VI are components of the interpolated wind vector. The fields 

of divergence were computed at 50-mb intervals from 900 to 100 mb by 

means of centered finite differences at each grid point. Boundary 

grid points were not used. 

Vertical motion is responsible for transporting moisture upward 

and releasing instability necessary for convection (Endlich and 

Mancuso, 1968). It is therefore one of the most important meteoro- 

logical parameters. 

At each sounding time vertical motion was calculated from the 

average horizontal divergence within each layer by the kinematic 

method. The equation used was: 

wk = w. + C@=$), Ap (6) 

where w k is the vertical velocity at the top of the kth layer, 6.1~ is 

the vertical velocity at the bottom of the first layer which includes 

the terrain-induced vertical motion and a contribution from surface 

wind divergence, (m)k is the average horizontal wind divergence 

within the kth layer, and Ap = 50 mb. 
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The vertical motion not accounted for by linear interpolation of 

the wind field is given by: 

w’ = 
"M - '-')I 

= w. + C($-=$M)k Ap - [W, + d$=$)k Ap] (7) 

where vM and 0, refer to the measured and linearly interpolated veloc- 

ity vectors, respectively, and w. is the vertical velocity at the 

bottom of the first layer. Since o. is a function of terrain-induced 

vertical motion and surface wind divergence, it can be evaluated for 

any hour desired from available surface reports. Therefore Eq. (7) 

becomes: 

bl’ = ~[(6$,,,) - (i%$)], Ap 

and since ?*rM - $06, = ("o*$)' from Eq. (5) 

- - 
then ?-TM - and Eq. (7a) becomes 

(7a) 

w’ = c(C*v’>’ op (8) 

where (?*f)' is the average wind divergence through a layer that is not 

accounted for by linear interpolation. 

Since the accuracy of rawinsonde data usually decreases with 

height (Fuelberg, 1974; see Table 1), the accuracy of divergence also 

decreases with altitude. In order to reduce the errors which ac- 

cumulate when vertically integrating horizontal wind divergence, an 

adjustment technique developed by O'Brien (1970) was applied to the 

computed vertical motion at all levels. This method involves adjusting 

vertical motion at 100 mb to zero and applying a correction factor 

which depends upon the pressure level. The correction factors are 

given by: 
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G 
= w’ - (u; - w ioo) .I$%+ (9) 

where $ is the adjusted vertical velocity for any pressure, W' is the 

unadjusted vertical velocity computed from Eq. (8), WiOO is the 

vertical velocity at 100 mb which was set to zero, w;C is the unadjusted 

value at 100 mb from Eq. (8), k is the pressure level number (k=l, 2, 

. ..K) and K is the total number of pressure levels (K=l7). 

Vorticity is a measure of the rotation of the wind. Researchers 

have found that thunderstorms form shortly after the development of 

cyclonic circulation in the troposphere, and that moderate to strong 

positive vorticity advection is present during and prior to severe 

weather outbreaks (Read and Scoggins, 1977). 

The relative vorticity that is not accounted for by linear 

interpolation of the wind field over a 12-h period is given by: 

5 ' = (‘10) 

where uM and vM are the components of the measured wind vector, UT and 

VT are the components of the interpolated velocity vector, and sM and 

ST represent vorticity of the measured and interpolated wind, 

respectively. The advection of vorticity not accounted for by linear 

interpolation of the wind field is given by: 

= -(u aEt4 - + VM 2) +(uIz- + VI 2). (11) 
M ax 

Analogous to Eq. 11, the equation for the advection of temperature 

is: 

(-$.$J-)’ = -(Us, 2 + vM 2) + (uI > + VI $1 (12) 

where TM and TI are the measured and interpolated temperature, 
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respectively. All derivatives in Eqs.(lO)-(12) were computed by 

centered finite differences over two grid distances. 

3) Stability 

Studies have shown that convectively unstable air is required for 

the development of thunderstorms. In this research, stability was 

determined for three layers: 900-700 mb; 700-500 mb; and 900-500 

mb. The equation used is 

aeE AeE --=-- 
'e= ap AP (13) 

where a, refers to convective instability (CI). Gridded fields of 

equivalent potential temperature, (eE)M,were obtained from measured 

data by the Rossby formula for pseudo-equivalent potential temperature, 

namely: 

where L is the latent heat of condensation, q is the mixing ratio, C 
P 

is the specific heat at constant pressure, and T, is the temperature 

at saturation. The partial potential temperature, eD, is given by: 

eD 
= T ['OOO R/C 

p-e] p (15) 

where R is the gas constant for dry air, p is the pressure, and e is 

the vapor pressure. Interpolated values of equivalent potential 

temperature were computed from interpolated quantities of the basic 

variables. 

Measured and interpolated values of CI were evaluated by.finite 

differences from grid point values of (eE)M and (eE)T, respectively, 

with ap equal to the difference between the pressures at the top and 

bottom of each layer. The convective instability not accounted for by 
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linear interpolation is given by 

G 
= - c 

4) Erroranalysis 

(A~)~/API - [&@I/b 1 a (16) 

The RMS errors of the basic variables obtained from rawinsonde 

soundings may have a significant effect on computed differences between 

observed and linearly interpolated values of these variables. If 

errors in the computed quantities are of the same magnitude or greater 

than the differences between observed and interpolated variables, 

then the specification of the differences may not be possible. When 

the errors are large, the differences may be due entirely to error in 

the basic data instead of the nonlinearity of synoptic variables. 

An error analysis was performed for observed and interpolated 

variables and their differences to determine the magnitude of the 

errors. A technique presented by Young (1962) was used and is given 

as follows. If a quantity, Q, is calculated from observed quantities 

-a and b (Q = f(a,b)), the error in Q resulting from errors in a and b 

is given by: 

UQ = [($ uaJ2 + ($ ob)21”2 (17) 

where uQ, ua, and ab are the standard deviations of Q, a, and b, 

respectively. 

Errors in wind for an elevation angle of 20", and errors for 

temperature, moisture, and pressure were obtained from Fuelberg (1974). 

The errors in the basic variables were then used in Eq. (17) to compute 

the errors for derived variables such as kinematic parameters. 

Errors for interpolated values of the basic variables and 

differences between observed and interpolated quantities were computed 

by applying Eq. (17) to Eq. (1). The terms within brackets in Eq. (1) 

represent the linearly interpolated quantity of the variables. 

Therefore, 
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Q, = b (xl2 - x0) + x0 = k 92 + x()(1 - +* 

If we let a = x0 and b = x12, then from Eq. (17) 

‘QI = %$ ‘x0) 
c 

(aQ1 2 + (aQ1 2 l/2 

aXla 12 uX 
1 1 

which becomes 

uQI = [(1 - +2 0 
xO 

2 + (b)' (5 
xl2 

21'12. 

Since 04, ‘= ux12 = ox3 

we have (17a) 

The error in the interpolated parameters resulting from errors in the 

original data is a function of the time interval within the 12-h period. 

Substituting for t = 3, 6, and 9 h into Eq. (17a) yields: 

uX 

= [0.625 ~~~1”~ for t = 3 h 
I 

and 

uX 

= co.5 ux2p2 for t = 6 h 
I 

uxI 
= [0.625 ~~~1”~ for t = 9 h . 

Applying the same technique to Eq. (1) yields: 

uX’ 
= Kl.625 ~~~1"~ for t = 3 h 

uX' 
= Cl.5 ux21"2 for t = 6 h 

and 
uX 

' = Cl.625 u~~]"~ for t = 9 h. 
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In order to determine errors in differences between parameters 

computed from observed and interpolated values of the basic variables, 

Eq. (17) was applied to the equations listed in previous sections using 

errors for the original data (Fuelberg, 1974), and errors for interpo- 

lated quantities of the basic variables that were obtained from Eq. 

(17a). Results are presented in Table 3. 

Table 3 shows that the magnitudes of errors for interpolated 

quantities and for differences between observed and linearly 

interpolated quantities were time dependent. The smallest amount of 

error was introduced at the mid-point of the 12-h interpolation period 

with larger errors at 3 and 9 h. Errors for linearly interpolated 

values were less thzn standard deviations of the original data while 

errors for the differences were greater than standard deviations of 

the original data. 

Errors in mixing ratio and potential temperature decreased with 

altitude. This can be expected since moisture content generally de- 

creases with height and is often negligible above 500 mb. Errors in 

all kinematic parameters increased with altitude since increasing error 

was introduced in rawinsonde measurements of wind in the upper levels 

of the atmosphere. 

The error analysis performed in this study did not account for 

smoothing effects of data reduction and the objective analysis method, 

and therefore the errors presented in Table 3 are approximate errors 

for the analyzed variables. Little is known about the effects of 

these techniques in smoothing out or introducing error. However, 

Vincent and Chang (1975) introduced random errors in rawinsonde data 

used to compute energy budgets for tropical and extratropical cyclones 

and found that maximum errors after smoothing by analysis were less 

than.or equal to standard deviations computed in Eq. (17). This im- 

plies that smoothing introduced in analysis techniques tends to reduce 

the effect of errors. 

. . 
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Table 3. Estimated RMS errors for observed, interpolated, and correspondinq differences for synoptic variables. 
-- 

0 0 
X uX’ 

Variable Pressure (mb) 
xI 

3h 6h 9h 3h 6h 9h 

Tcmpcroturc ("C) .3 .24 .21 .24 .38 .36 .38 

Geopotential Height (gpm) 500 10.0 8.0 7.2 8.0 12.7 12.2 12.7 
300 20.0 15.8 14.1 15.8 25.5 24.5 25.5 - 

Mixing Patio (g kg 1 
-1 

850 .69 .55 .49 .55 .88 .84 .88 
700 .40 .32 .28 .32 .51 .49 .51 
500 .15 .12 .11 .12 .19 .18 .19 

Wind Speed (m se=-') 850 .8 .62 .56 .62 1.02 .98 ; 1.02 
700 1.5 1.19 1.06 1.19 1.9 1.84 1.9 
500 2.5 2.0 1.8 2.0 3.2 3.1 3.2 
300 4.5 3.6 3.2 3.6 5.7 5.5 5.7 
100 6.0 4.7 4.3 4.7 7.6 7.3 7.6 -v-m 

Divergence (lo-' set-1) 850 .5 .4 .35 .4 .63 .60 .63 
700 1.0 .8 .7 4 ..8 1.3 1.2 1.3 
500 1.5 1.2 1.1 1.2 1.9 1. . 8 1.9 
300 2.2 1.7 1.6 1.7 2.8 2.1 2.8 

Vertical Motion (ub set 1 
-1 

850 .4 .32 .28 .32 .5 .48 .5 
700 1.5 1.2 1.1 1.2 1.8 1.7 1.8 
500 :~ 4.0 3.2 2.8 3.2 4.9 4.7 4.9 
300 7.0 5.5 5.0 5.5 8.8 8.5 8.8 

Vorticity (10" set-1) 850 .5 .4 .35 .4 .63 .60 .63 
700 1.0 .8 .7 .8 1.3 1.2 1.3 
500 1.5 1.2 1.1 1.2 1.9 1.8 1.9 
300 2.2 1.7 1.6 1.7 2.8 2.7 2.8 

I 
Advection of Vorticity 850 4.0 3.0 2.5 3.0 4.5 

(10-l' secM2) 
4.4 4.5 

700 9.0 7.0 6.5 7.0 11.5 11.0 11.5 
500 16.0 13.0 11.5 13.0 19.0 18.5 19.0 
300 : 22.0 17.5 15.5 17.5 25.0 24.5 25.0 

Advection of Temperature 850 I 1.9 1.5 1.3 1.5 I 2.4 2.3 2.4 
-(10e5 OC set-l) 500 : 4.5 3.6 3.2 4.5 5.7 5.5 5.7 

/ 
Equivalent Potential 850 1.2 ' 1.0 .9 1.0 ! 1.5 1.4 1.5 

Temperature ("Cl 700 .7 .6 .5 .6 .9 .8 .9 
500 .5 .4 .3 .4 .6 . .6 .6 

Convective In_s.=ability 900-700 9.2 : 7.3 6.5 7.3 11.4 11.6 11.4 
(10'3 ocnlb ) 700-500 / 4.3 3.4 3.0 3.4 5.4 5.2 5.4 

900-500 3.9 / 3.1 2.8 3.1 4.9 4.8 4.9 



d. Statistical Analysis of Differences 

Several statistical techniques were employed in analyzing the 

data. The mean, standard deviation, and extremes for differences 

computed 3, 6, and 9 h after the initial time of the 12-h interpolation 

period were calculated for all variables at each pressure level. Mean 

values were used as measures of central tendency while standard 

deviations indicated dispersion or variation from the mean. Results 

were tabulated to determine pressure levels where these statistical 

parameters were largest and to examine how the parameters changed in 

time. 

A correlation analysis was employed at each time mentioned above 

to establish relationships between fields of differences at each 

pressure level with those at 850 mb. This level was chosen as the 

reference since most centers of differences were well defined at that 

level. Linear correlation coefficients were computed as follows: 

r = B!$fl= [ y j (Xij 
3 

- ')(Yij - 7) k'/Nbx~y) (18) 

where x.. 
1J 

refers to grid point values of a variable at 850 mb, x is the 

mean value of the 850-mb field, y.. refers to grid point values at the 

pressure level, k, 7 is the mean :ilue of the kth pressure-level field, 

ux and u refer to the standard deviations of the 850-mb and kth level 

differenze fields, respectively, and N is the total number of grid 

points considered. Results were tabulated to determine how r changed 

with altitude and time. Boundary grid points were not used in comput- 

ing the correlation coefficients. 

e. The. Ve_rtical Structure-, Temporal, and Spatial Continuity of 

Differences 

Gridded fields of differences between measured and interpolated 

quantities of the variables were analyzed objectively at 50-mb inter- 

41 



vals from 900 to 100 mb for 3-, 6-, and 9-h intervals within the 12-h 

period between regular rawinsonde observations. 

The vertical structure of differences was examined by correlating 

fields of differences as explained above. Individual centers of 

systems of differences were also examined to establish vertical and 

temporal continuity. This was approached by plotting the position of 

each center at selected pressure levels onto a separate chart. This 

analysis was employed to determine to what extent the centers sloped 

with altitude. Plots were constructed at 3-h intervals to determine 

how the vertical structure of these systems-changed with time. The 

magnitudes of centers at each level and time were tabulated to show 

levels where differences were largest, to indicate the degree of 

continuity with height, and to determine time continuity of the 

centers. 

f. Relationships of Differences to-Syn-optic -Features and Weather 

Relationships between the computed differences and synoptic 

conditions were determined by utilizing constant pressure charts and 

various cross sections. Surface synoptic features, such as cyclones 

and fronts, as well as areas of intense convection were superimposed 

upon charts of the nonlinear components of the variables. Selected 

vertical cross sections were used along with constant pressure charts 

to show a three-dimensional view of the atmospheric structure. Time 

cross sections were used to examine changes in magnitude of the dif- 

ferences between measured and interpolated quantities that were as- 

sociated with changing synoptic conditions. 

Direct comparisons of the computed differences to radar-observed 

convection were determined by use of MDR data. Averages of the dif- 

ferences were calculated at each level, corresponding to each MDR 

category previously described. Results were presented in vertical 

profiles for convective verses non-convective areas. 
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5. RESULTS 

a. Relation of Differences to Synoptic Features 

Fields of differences between measured values of synoptic 

variables and values of like variables interpolated linearly over 

3-, 6-, and 9-h intervals within the 12-h period between regular 

rawinsonde observations were computed and analyzed objectively. 

Negative differences indicated that an interpolated value of a variable 

was greater than the observed rawinsonde value, while positive dif- 

ferences meant that a value obtained by linear interpolation was 

less than the observed value. These differences were also an indi- 

cation of the amount o.f change in the variable over the time interval 

that was not accounted for by a linear change. Analysis of the fields 

of differences or nonlinear changes showed these differences to form 

centers that were systematic in time and space. Many of the centers 

correlated well in space with synoptic features, such as frontal 

zones, areas of low and high pressure, and upper-level troughs and 

ridges, as well as areas of radar-observed convection. 

Differences between measured and linearly interpolated values of 

temperature computed over 3-, 6-, and 9-h intervals within the 12-h 

interpolation period for the 850-mb level are shown in Fig. 11. Radar- 

observed convection (MDR L 4) and surface synoptic features are super- 

imposed. Selected centers of differences are labelled for future 

reference. 

Centers of temperature differences (nonlinear changes) were 

located along and behind the quasi-stationary front and in areastlof 

strong convection. Negative differences were found mainly in the cold 

air behind the front, while positive differences dominated in the warm 

air over the eastern United States, which was free of cloudiness. 

Positive differences were also found behind the stationary front in 

Texas. Center C, located in the cold air, was negative at all levels, 

while center D in the warm air was positive up to the tropopause. 
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Fig. 11. Differences between measured and linearly interpo- 
lated values of temperature ("C) computed over 3-, 6-, and 9-h 
intervals at 850 mb. Superimposed are surface fronta! posi- 
tions and radar-observed convection. (Letters appearing within 
each center are used for identification purposes.) 
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Fig. 11. (Continued) 

The negative centers of temperature differences found along and 

ahead of the front were associated with regions of light showers and 

strong convection, respectively. Center A (Fig. 11) correlated well 

in space with a thermal trough located over Indiana and Illinois at 

the 850- and 700-mb levels throughout most of the interpolation period. 

In the upper layers, above 500 mb, a "warm pocket" was established 
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slightly east of this area, and the center changed sign and sloped 

in that direction (Figs. 5-7). Center B (Fig. 11) was located in an 

area of strong, but dissipating, convective activity 3 h after the 

initial time of the interpolation period, and moved eastward behind a 

developing squall line in central Tennessee after 6 h. Negative dif- 

ferences in the lower levels in areas of strong convection may have 

been the result of,sudden temperature decreases from downdrafts of 

thunderstorms that were not represented by interpolation. Differ- 

ences behind the areas of convection may have been due to evaporative 

cooling or loss of insolation due to cloud cover. Above 800 mb, the 

center sloped westward over a region of subsidence and warm air 

advection, and changed in sign. Positive differences may be attributed 

to increases in temperature which were unaccounted for by a linear 

change, due to adiabatic warming or advection. 

Analysis of Fig. 11 shows that these centers of nonlinear changes 

were continuous in time. Values of differences associated with each 

center are presented in Table 4 for selected pressure levels. Each 

center is labelled as it appears in Fig. 11. Table 4 shows that these 

centers were continuous in the vertical as well as time. Maximum 

values associated with center C could not be distinguished above 500 

mb due to its proximity to the edge of the grid. Vertical structure 

of these centers are discussed in more detail in Section 5b. 

Table 4 also indicates that overall, 3-h nonlinear changes of 

temperature were greatest in the lower layers of the atmosphere, while 
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Table 4. Values of temperature differences ("C) for 3-, 6-, and 9-h 
intervals within the 12-h interpolation period at selected pressure 
levels for centers in Fig. 11. 

Center Pressure (mb) 3h 6h 9h 

A 850 -2.3 -2.1 - .5 
700 -2.2 -1.4 - .6 
500 2.3 3.9 
300 2.4 2.6 z-z 
100 1.6 3.8 1:5 

B 850 -3.3 -2.7 -2.0 
700 1.4 2.6 3.0 
500 .6 1.5 1.3 

300 100 ;:; ::i 1:: 

C 850 
700 
500 

-6.5 -4.0 -1.8 
-1.8 -1.8 -1.2 
-1.0 -1.0 - .5 

D 850 1.2 
700 1.8 
500 1.5 
300 .7 
100 -1.4 

1.0 

;:7" 

-1:: 

1.5 
1.5 
1.3 

.6 
- .5 

6-h changes were largest in the middle and upper layers. The relative 

contribution of these nonlinear changes over time intervals of 3, 6, 

and 9 h to observed changes over the same intervals are discussed in 

Section 5f. 

Differences between measured and interpolated values of mixing 

ratio for each time interval are presented for the 850-mb surface in 

Fig. 12. Well-defined centers of maximum differences were located 

behind and along the polar front, along the Gulf Coast, and in areas 

of strong convection. 
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a. 3 h 

Fig. 12. Differences between measured and linearly inter- 
polated values of mixing ratio (x 10-l g kg-l) computed over 
3-, 6-, and 9-h intervals at 850 mb. Superimposed are surface 
frontal positions and radar-observed convection. 
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Fig. 12. (Continued) 

Largest differences were found in regions behind the front. 

Positive values associated with centers B and C indicated that the air 

behind the front contained more moisture than indicated by linear 

interpolation, while the large negative center in Texas (D) suggested 

the air behind the stationary front to be much drier than indicated 

by interpolation. In areas of strong convection, differences were 

negative in the lower layers of the atmosphere and positive above 

700 mb. This may have been the result of strong low-level convergence 

and upward motion transporting moisture aloft in these areas, causing 

losses of moisture in lower layers and increases aloft. Since these 

processes can occur over time scales much less than 12 h, these rapid 

changes in moisture content could not be identified by linear 

interpolation over a 12-h period. 
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Values of differences associated with each center in Fig. 12 are 

presented in Table 5. Overall, centers are best defined at the 850-mb 

level and decrease in magnitude with altitude. Three-hour nonlinear 

changes were largest for most centers at the 850-mb level. Changes 

were more variable with time at most other levels. However, centers 

were continuous both temporally and vertically as shown by Fig. 12 

and Table 5. 

Table 5. Values of mixing ratio differences (g kg-') for 3-, 6-, 
and 9-h intervals within the 12-h interpolation. period at selected 
pressure levels for centers in Fig. 12. 

Center Pressure (mb) 3h 6h 9h 

A 850 -2.3 -3.1 -2.1 
700 -2.6 -4.1 -4.6 
500 1.0 - .8 - .6 

B 850 5.8 3.3 
700 

- 
:!: 

z-t 

500 - :7 
2.4 

- .9 

C 850 
700 

-"I; 4.9 1.8 
- .7 - .8 

D 850 -7.3 -4.2 -2.2 
700 -1.3 -1.6 -1.0 

E 850 -2.4 -1.1 - .6 
700 -1.3 -1.2 -4.6 
500 .7 1.9 1.7 

F 850 7.8 3.2 3.5 
700 1.3 1 .5 1 -7 
500 1.2 1.2 .9 
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Differences between measured and linearly interpolated values of 

geopotential height 6 h after the initial time of the 12-h interpola- 

tion period at 500 mb are shown in Fig. 13. Negative differences 

(center A) correlated well in space.with an upper-level trough which 

was established over Indiana, Kentucky, and Tennessee (Figs. 5-7). 

This indicated a decrease in geopotential height in association with 

the passage of the trough that was not accounted for by interpolation. 

Negative differences were also located on the western edge of the grid 

network where another trough was located. The large area of positive 

differences in the central portions of the United States were as- 

sociated with a weak upper-level ridge. 

Fig. 13. Differences between observed and linearly interpolated 
values of geopotential height (gpm) at 500 mb computed 6 h after 
the initial time of the lZsh interpolation period. Superimposed 
are surface frontal positions and radar-observed convection. 
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Centers of geopotential height differences moved only slightly 

eastward throughout the period. This can be attributed to the slow 

movement of systems during the AVE IV experiment. Table 6 gives the 

values of geopotential height centers at various levels and shows 

that variations in the intensity of these centers were systematic in 

time. Overall, 6-h differences were largest, except for an area along 

the mid-Atlantic coast (center D) where 3-h differences were largest. 

Table 6 also shows that positive geopotential height differences 

increased with altitude and negative differences became less negative 

above 700 mb. Since geopotential height is a function of the vertical 

integral of temperature, this vertical increase of the differences can 

be expected, since temperature differences were either positive 

through the troposphere or became less negative and changed sign with 

increasing altitude. 

Differences between measured and interpolated values of wind speed 

computed 6 h after the initial time of the interpolation period at the 

850- and 300-mb levels are presented in Fig. 14. The largest dif- 

ferences at 850 mb were found along the frontal zone and along the 

zone of maximum observed winds denoted by the dark arrow. Positive 

centers were found directly over areas of strong convective activity 

in central Tennessee and east of a surface low in Kansas. At 300 mb, 

largest differences were likewise associated with the zone of maxi- 

mum observed wind speeds. Similarities were found for all levels at 

all time periods suggesting that these centers 

sloped with altitude following the zone of max 

magnitudes of differences between measured and 

may be a function of observed wind speeds. 

A cross section of measured and interpola 

of maximum difference 

mum wind, and that the 

interpolated wind speed 

ed values of the wind 

field, and the corresponding differences in wind speed along line 

XYZ of Fig. 6 are shown in Fig. 15. The largest differences were 

found in the upper levels, corresponding to the jet core near the 

tropopause. Centers of maximum differences also were found ahead of 

the frontal zone and in regions of strong convection denoted along 

the bottom axis. Figure 15 indicates that linear interpolation could 
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Table 6. Values of geopotential height differences (gpm) for 3-, 6-, 
and 9-h intervals at selected pressure levels for centers in Fig. 13. 

Center Pressure (mb) 3. h 6h 9h 

A 

B 

C 

D 

850 ' -4 -9 -6 

700 -17 -14 -8 

500 -12 -8 -7 

850 16 23 17 

700 18 23 19 

500 25 35 32 

300 32 46 42 

100 56 97 52 

850 20 31 18 

700 26 35 17 

500 33 23 23 

300 49 47 38 

100 68 88 68 

850 12 12 7 

700 14 14 10 

500 28 24 22 

300 56 54 53 

100 82 81 45 

E 850 5 9 4 

700 16 15 8 

500 17 25 12 

300 20 44 29 

100 32 77 59 

53 



Fig. 14. Differences between observed and linearly interpo- 
lated values of wind speed computed 6 h after the initial time 
of the interpolation period at the 850- and 300-mb layers. 
Superimposed are surface frontal positions and radar-observed 
convection. Arrow indicates zone of maximum wind speed for 
each pressure level. Units are m s-l. 

54 



100 

200 

8 
400 

g 500 
: 600 
cb 700 

800 
900 

100 

200 

E 
400 

2 500 In 
g 600 
PI 

700 
800 
900 

Y ‘TN1 ’ 2 
a. Observed Winds 

Y ITRW I 2 
b. Interpolated Winds 

X Y I TRWi- z 
C. Differences (observed - Interpolated) 

Fig, 15, Vertical cross sections of observed and interpolated 

winds, and corresponding differences (m s -l) along line XYZ of 

Fig. 6 at 1800 GMT, 24 April 1975. 
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define the direction of the upper-level air flow with reasonable ac- 

curacy. Largest differences in wind direction were found in the lower 

levels just ahead of the front. However, interpolation was able to 

denote the wind shift behind the front. 

As discussed in Section 4c, the wind field obtained by linear 

interpolation was used to compute various meteorological variables. 

Differences between the values computed from observed winds and those 

derived from interpolated winds represent the kinematic structure of 

the atmosphere that is not measured by assuming a linear change in 

the winds over a 12-h period. 

Fields of differences for the horizontal wind divergence over 

3, 6, and 9 h are shown in Figs. 16-18 for the 850- and 300-mb 

pressure levels. Negative differences were found in areas of de- 

veloping and intensifying convective activity which indicated that the 

wind field was becoming more convergent in the lower layers of the 

atmosphere than shown by interpolation. Center E, for example, cor- 

related well in space with the squall line which intensified rapidly 

over Kentucky and Tennessee between 1800 and 2100 GMT. The positive 

differences over these areas after the first 3 h of the interpolation 

period (Fig. 16a) and the negative differences over the area after 6 h 

(Fig. 17a) suggests large increases in the convergence of the wind 3 h 

prior to convective activity that were not accounted for by linear 

changes in the wind field. Negative centers were also located along 

the polar front in Indiana and Illinois, but were associated with only 

light rain showers. 

In AVE IV, convection also occurred in areas where the wind field 

was divergent in the lower layers of the atmosphere, such as in 

Arkansas at 1500 GMT, 24 April. Activity, however, diminished rapidly 

within the following 3 h. The intense positive center (B) over 

Arkansas after the first 3 h of the interpolation period (Fig. 16a) 

indicated increasing divergence in the low-level wind field over the 

3-h period that was not indicated by interpolation. The center moved 

eastward throughout the interpolation interval and was positioned 
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Fig. 16. Differences between values of horizontal wind 
divergence '(x 10e5 s- '1 computed from observed and 
interpolated winds 3 h after the initial time at 850 and 
300 mb. Superimposed are surface frontal positions and 
radar-observed convection. 
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Fig. 17. Diffeynces between values of horizontal wind 
divergence (x 10‘ s-l) computed from observed and interpolated 
winds 6 h after the initial time at 850 and 300 mb. Superim- 
posed are surface frontal positions and radar-observed convec- 
tion. 
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Fig. 18. Diffe-ryys between values of horizontal wind 
divergence (X 10 ) .komsuted from observed.and interpo- 
lated winds 9 h aft& the initial time at 850 and 300 mb. 
Superimposed are surface frontal positions and radar-observed 
convection. 
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behind the squall line in western Tennessee by 1800 and 2100 GMT 

(Figs. 17a and 18a). 

Analysis of the wind divergence differences at the 300-mb level 

shows that large positive centers were generally over areas of con- 

vection which indicated more divergence in the upper levels of the 

atmosphere over areas of convection than was accounted for by 

interpolation. Well-defined positive centers existed along the polar 

front, over the squall line in Kentucky and Tennessee, and over the 

area of convection east of the surface low in South Dakota. 

Values of maximum differences associated with centers in Figs. 16- 

18 are presented for selected pressure levels in Table 7. Vertical 

and temporal continuity of these centers is again established. The 

change in sign and decrease in center intensities near the 500-mb 

level was an indication of the level of non-divergence. Overall, 

centers were best defined at 3 and 6 h after the initial time of the 

interpolation period. 

Fields of vertical motion differences, calculated using Eq. 8, 

are shown in Fig. 19 for the 850-mb level. Negative centers were found 

along the polar front and in areas where convective activity was gen- 

erally increasing in intensity, such as central Tennessee and South 

Dakota, which indicated more upward motion in these areas over the time 

period than was measured by interpolation. The positive differences 

in these areas 3 h after the initial time and negative differences 

established after 6 h suggest rapid increases in upward motion in 

the boundary layer 3 h prior to convection that were unaccounted for 

by interpolation of the wind field. 

An intense positive c'enter was found after the first 3 h in north- 

eastern Arkansas where a squall line was located. The intensity of 

convection, however, was decreasing and all activity dissipated within 

the following 3-h period. Rapid decreases in the amount of upward 

motion in this area over the first 3 h and a change to downward motion 

during the following 3 h was not accounted for by assuming linear 

changes in the wind field over a 12-h period, which suggests that the 

nonlinear changes in the kinematic structure of the atmosphere were im- 
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Table 7. Values of divergence differences (10m5 s-l) for 3-, 6-, 
and 9-h intervals at selected pressure levels for centers in Figs. 
16-18. 

Center Pressure 3h 6h 9h 

A 850 -5.5 -5.3 -1.8 

700 -3.1 -2.9 -3.4 

500 -2.5 -3.4 - .9 

300 5.4 4.5 2.0 

B 850 4.0 5.4 1.1 

700 4.8 4.3 4.1 

500 2.3 2.2 2.1 

300 -2.5 -4.5 -2.0 

C 850 -2.7 -2.3 * 

700 -1.3 -1.0 * 

500 -2.8 -1.3 * 

300 2.5 2.2 * 

D 850 -2.7 -2.3 -1.4 

700 -2.4 -4.8 -4.4 

500 -1.3 -3.8 -3.4 

300 1.6 4.9 2.3 

E 850 -3.3 -2.4 

700 -1.0 -1.3 -2.0 

500 .5 -1.9 - .6 

300 1.6 5.3 2.4 

*Center could not be distinguished due to proximity to edge of grid. 
-Centers not defined at this level and time. 

61 



Fig. 19. Differences between values of vertical motions 
hb s -1) computed from observed and interpolated winds over 
3-, 6-, and 9-h intervals at 850 mb. Superimposed are surface 
frontal positions and radar-observed convection. 
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Fig. 19. (Continued) 

important in the dissipation of convection. This also shows that 

upward motion in the boundary layer of the atmosphere is an essential 

condition for the maintenance of convection (Endlich and Mancuso, 

1968). Positive centers were also located behind the polar front in 

the northern plains, and behind the stationary front in Texas. 

A cross section of observed and interpolated vertical motion, 

and the corresponding differences after 6 h along line XYZ of Fig. 6 

are shown in Fig. 20. Frontal structures and observed convection 

(MDR 1 4) are also shown. 

The observed vertical motion field (Fig. 20a) shows good corre- 

lation with areas of strong convection. Upward motion occurred just 

ahead of and in the area of strong thunderstorms, as well as near 

the frontal zone. Upward motion was also found behind the front; 

however, the system did not produce convective showers. Upward 

motion in the boundary layer was much weaker in the areas along and 
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Fig. 20. Vertical cross section of vertical motions computed 

from observed and interpolated winds, and corresponding dif- 

ferences Qlb s-l) along line XYZ in Fig. 6 at 1800 GMT, 

24 April 1975. 
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behind the front than in the areas of strong convection, which again 

establishes the necessity of upward vertical motion in the lower 

layers for the production and maintenance of convection. In regions 

of strong subsidence, no convection was observed. 

Although interpolation, on the whole, could determine regions of 

upward and downward motion with some accuracy, this method proved 

grossly inadequate in areas of strong upward and downward motions in 

the observed wind field. Figures 20b and c show that interpolation 

could not define the kinematic structure of the atmosphere in the area 

of strong thunderstorms and in the region behind the squall line. 

Differences equal or greater in magnitude than observed values were 

found in these areas, which means errors greater than 100 percent are 

possible by assuming linear changes in synoptic variables. This fur- 

ther shows that large and rapid changes in the observed vertical motion 

field over the time period could not be accurately defined by linear 

interpolation over a 12-h period, and further suggests the importance 

of nonlinear changes in the development of convective activity. 

Values of maximum difference for vertical motion centers in Fig. 

19 are given for selected pressure levels in Table 8. Centers exhibit 

both vertical and temporal continuity. Differences computed after 6 h 

were generally largest, and 3- and 6-h differences were much larger 

than 9-h differences. Maximum values for most centers occurred at the 

500-mb level near the level of non-divergence. 

The error analysis presented in Table 3 indicated that vertical 

motion differences were subject to considerable error above 500 mb. 

Table 8 shows that magnitudes of the centers of differences for 

vertical motions were less than the estimated errors at and above 500 

mb. Caution therefore must be exercised when referring to values of 

the differences at these levels. 

Fields of vorticity differences calculated using Eq. 10 are shown 

in Fig. 21 for the 500-mb surface for each time interval. Centers of 

vorticity differences clearly depict the existence of short waves. 

Intense positive centers, indicating increased circulation over the 

time interval that was not represented by interpolation, correlated 
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Table 8. Values of vertical motion differences (ub s-') for 3-, 6-, 
and 9-h intervals at selected pressure levels for centers in Fig. 19. 

Center Pressure (mb) 3h 6h 9h 

A 850 -5.7 -5.2 -2.2 

700 -8.2 -8.5 -5.2 

500 -2.4 -7.4 -4.2 

300 -2.3 -7.0 -3.8 

B 850 3.8 5.2 1.3 

700 6.4 8.7 3.5 

500 3.7 3.8 3.0 

300 1.9 3.4 3.0 

C 850 -2.6 -2.6 -2.2 

700 -3.2 -2.9 -2.5 

500 -3.4 -3.2 -2.0 

300 -2.5 -1.1 -2.5 

D 850 -1.5 -2.6 -1.6 

700 -2.3 -3.7 -1.5 

500 -4.9 -4.0 -3.0 

E 850 2.1 1.6 1.1 

700 3.6 3.1 2.1 

500 1.7 1.9 

300 .7 3.7 

F 850 -3.1 -1.1 

700 -3.8 -4.6 

500 -2.1 -5.6 

300 -2.4 -5.4 

- Centers not defined at this level and time. 
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Fig. 21. Differences between values of vorticity 
(x 10-S s -1) computed from observed and interpolated 
winds over 3-, 6-, and 9-h intervals at 500 mb. Super- 
imposed are surface frontal positions and radar-observed 
convection. 
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Fig. 21. (Continued) 

well in space with troughs, such as over Indiana, Kentucky, and 

Tennessee, as well as with developing surface lows, such as in New 

England and South Dakota. Negative centers were found in bands between 

positive centers, mainly behind the polar front and in regions where 

ridges were established such as Missouri and Arkansas. 

Centers were found to fit the synoptic situation in the lower 

layers of the atmosphere as well. Table 9, which lists values of dif- 

ferences associated with various centers for selected pressure levels, 

indicates that the centers were well established in the vertical. 

Overall, differences were largest aloft except for Center A, where 

700-mb differences were most pronounced after 3 and 9 h. Synoptic 

charts show the short wave over this area to be best defined at the 

700-mb level (Figs. 5-7). Differences were largest in the upper 

levels in this region after 6 h when the squall line was developing 
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Table 9. Values of vorticity differences (10D5 s-l) for 3-, 6-, and 
9-h intervals at selected pressure levels for centers in Fig. 21. 

Center 

A 

Pressure (mb) 3h 

850 2.4 
700 6.8 
500 3.2 
300 4.5 

6h 

t-i 

5:5 
5.7 

9h 

3.1 
4.5 

::; 

B 850 -2.7 -3.8 -1.9 
700 -2.4 -4.3 -1.7 
500 -4.9 -4.9 -2.4 
300 -5.3 -8.9 -6.8 

__-- - 

C 850 -3.9 -3.5 -3.0 
700 -2.8 -2.5 -2.1 
500 -4.0 -3.5 -2.0 
300 -1.0 -2.7 -3.9 

D 850 3.9 2.5 700 
500 

f :i 3.2 i-i 
3.8 2:1 

E 850 
700 -2.4 -1:9 -117 
500 -3.7 -3.8 -1.3 
300 -5.3 -5.7 -3.5 

F 850 2.0 -2.3 -2.2 
700 -2.4 -1.3 -1.8 
500 -2.2 -3.2 -3.5 
300 -1.0 -1.6 -2.5 

G 850 1.5 3.9 700 E 6.9 4:; 
500 6.9 5.7 
300 2:2 9.0 7.5 

- Centers not defined at this level and time. 
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which suggests'a possible correlation between large changes in the 

vorticity field in the upper levels prior to convection. 

Table 9 a'lso shows temporal continuity in these centers. For 

most centers, 6-h differences were largest, especially for centers in 

the western portion of the network where surface lows over South 

Dakota and Kansas began intensifying in conjunction with the develop- 

ment of the second short wave. Values associated with these centers 

were sometimes larger in magnitude than values of vorticity computed 

from observed wind at the same time, indicating errors greater than 

100% were possible in calculating vorticity from interpolated winds. 

Figure 21 shows that most of the centers moved slightly eastward 

through the interpolation period with the movement of these short 

waves. 

Differences between values of vorticity advection computed from 

observed and interpolated winds are shown for the 500-mb level in Fig. 

22. Differences over all time intervals fit the synoptic situation 

very well, with positive centers, which indicate greater amounts of 

positive vorticity advection than measured by interpolation, occurring 

ahead of vorticity difference centers and negative differences located 

upwind of vorticity difference centers. This pattern depicts the 

existence of short waves in the wind field. Similar results were 

found in fields of vorticity advection computed from observed winds in 

AVE IV. Areas of strong positive advection (PVA) existed ahead of 

vorticity centers with negative advection upstream from the centers. 

Fig. 22 suggests a possible lag relationship between positive 

vorticity advection differences in the upper levels of the atmosphere 

and radar-observed convection. Positive centers were located ahead of 

areas of strong convection and studies have indicated that the develop- 

ment of PVA at the mid and upper levels is required, along with 

favorable conditions in the lower levels, to initiate or maintain 

thunderstorms (Read and Scoggins, 1977). Since most of these centers 

of vorticity advection differences move eastward in time and maintain 

their position ahead of areas of strong thunderstorms, it is apparent 

that significant development of PVA 3 h prior to convective activity 
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Fig. 22,2 
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Differences between values of vorticity advection 
s6 ) computed.from observed and interpolated winds 

-3 -, and 9-h intervals at 500 mb. Superimposed are 
surface frontal positions and radar-observed convection. 
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c. 9 h 

Fig. 22. (Continued) 

is not accounted for by linear interpolation of the wind field. This 

result also depicts the possibility that cyclonic development in the 

mid to upper troposphere may be important in the initiation and 

maintenance of convective storms. Values of several of the centers 

were nearly equivalent to and, in some cases, greater in magnitude 

than centers of vorticity advection computed from 3-h rawinsonde 

values. Thus, errors of nearly 100% or greater were possible by 

assuming linear changes in winds over a 12-h period. 

Patterns of vorticity advection differences in the lower levels 

also correlated well in space with synoptic features. Narrow bands 

of positive and negative centers were found in areas where upper-level 

short waves were established. Relationships to convective activity, 

however, were not well defined at lower levels. 

Fig. 23 shows differences between temperature advection computed 

from observed and interpolated winds and temperatures at the mid point 
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Differences between values of temperature advection 
-1) computed from observed and interpolated winds 

and tempera&res 6 h into the interpolation period at 850 and 
500 mb. Superimposed are surface frontal positions and radar- 
observed convection. 
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of the 12-h interpolation period for the 850- and 500-mb levels, Bands " 

of negative differences at 850 mb were found mainly along and behind 

the polar front and in the area of strong thunderstorms in central 

Tennessee. Negative values of differences indicate colder tempera- 

tures being advected into these regions than was indicated by linear 

interpolation. Positive differences were found in a band eaSt of the 

surface lows in South Dakota and Kansas, and in the warmer air along 

the Gulf Coast and Eastern States. Warmer air was being advected into 

these regions than was measured by interpolation. 

At 500 mb, negative centers were located in and ahead of areas of 

strong convection, with positive differences over the northeastern, 

southern, and western portions of the network. Warm air advection is 

generally found in lower layers in areas of strong convection with 

less warm air or even cold air advection aloft (Petterssen, 1956). In 

eastern Kansas, increases in warm air advection in the lower layers and 

cold air advection aloft, that were not represented by linear inter- 

polation, were found prior to and during thunderstorm development. 

Although decreases in warm air advection in the lower layers were as- 

sociated with the squall line over central Tennessee, even larger 

decreases were found aloft. Thus, in all areas of convection, temper- 

ature advection patterns supported decreasing stability through a deep 

layer of the atmosphere that was unaccounted for by assuming linearity 

in synoptic variables over a 12-h period. 

Fields of convective instability not represented by linear 

interpolation are shown for three layers of the atmosphere (900-500 

mb, 900-700 mb, and 700-500 mb) 6 h into the interpolation period in 

Fig. 24. Negative differences, indicating nonlinear decreases in 

stability through a deep layer (Fig. 24a), were found to correlate 

well in space with unstable areas depicted by temperature advection 

(Fig. 23). Although the field indicated convection in unstable air, 

differences were small for this deep layer and the field was too smooth 

to pinpoint strong relationships between stability and convection. 

Values of o;? for the 900-700-mb layer show that nonlinear 

decreases in stability (negative differences) existed in most areas of 
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b. 900-700 mb 

Fig. 24. Differences between measured and linearly interpo--l 
lated values of the convective instability index (x lo-* OC mb ) 
computed 6 h into the interpolation period for various levels 
of the atmosphere. Superimposed are surface frontal positions 
and radar-observed convection. 
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c. 700-500 mb 

Fig. 24. (Continued) 

strong thunderstorms. Larger decreases, however, were often found in 

regions free of thunderstorms. The fact that areas of strong con- 

vection were more stable than some areas free of convection indicates 

the possible effect of thunderstorms interacting with their environ- 

ment to stabilize the lower layers of the atmosphere. 

In the 700-500-mb layer, greater nonlinear decreases of stability 

occurred than in the lower layer (900-700-mb) in areas of thunder- 

storms. Instability in the middle troposphere may have been important 

in the maintenance of thunderstorm activity. 

Several studies have indicated that a convectively unstable layer 

of air is necessary for the development of thunderstorms (Miller, 1967; 

Wilson and Scoggins, 1976). Nonlinear decreases of stability were 

found at least in one layer in all areas of convection in this study. 

Large decreases in areas free of thunderstorms, however, suggest that 

other factors must be important in the release of this instability 

and the development of thunderstorms. 
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b. Vertical Structure 

The vertical structure of centers of differences between measured 

and linearly interpolated values of variables, or the nonlinear changes 

in the variables over 3-, 6- , and 9-h intervals, was examined with 

regard to vertical extent and slope of these centers. If these 

centers were established only in the lower layers of the atmosphere, 

then the nonlinear changes may be due mostly to diurnal effects, since 

the 12-h interpolation period over the grid network runs from 6:00 

a.m. CST to 6:00 p.m. CST. Centers that extend vertically to the upper 

layers of the atmosphere are more likely due to synoptic features such 

as frontal zones, short waves, or sub-synoptic systems. 

The vertical structure of these differences was first examined 

by determining relationships between fields of differences at various 

levels and a selected reference level. The 850-mb level was chosen 

since many of the centers of maximum difference were first well-defined 

at this level. A correlation analysis was employed to determine such 

vertical relationships. Correlation coefficients for each variable 

were calculated using Eq. 18 and results are shown in Table 10. 

All coefficients in Table 10 were statistically significant at the 

five percent level with the exception of values between -0.13 and 

+0.13 (Wine, 1964). A coefficient of 1.00 indicates a perfect cor- 

relation or perfect linear relation between the two fields of dif- 

ferences and, therefore, a high coefficient indicates a strong re- 

lationship. Negative correlation suggests the two fields of dif- 

ferences had an out of phase relationship. 

Table 10 shows that relationships between fields of temperature 

differences at various pressure levels and the 850-mb field were 

largest in the lower layers. Correlations changed sign around the 

600-mb level and again at the tropopause which suggests -that, overall, 

differences changed sign in the mid troposphere and above the tropo- 

pause. Relationships were fairly well established up to 400 mb where 

temperature difference centers were not well defined, and increased 

again near the tropopause. Correlation decreased with time in the 

77 



.$ 
Table 10. Correlation coefficients for temperature, mixing ratio, .Q! < '. 

and geopotential height differences computed for 3-, 6-, and 9-h 
intervals within the 12-h interpolation period. 

a. Temperature 

Pressure Intervals 3h 6h 9h 

850-800 mb .43 .44 -38 
850-700 . 32 .19 .14 
850-600 -.29 -.27 -17 
850-500 -.30 -.25 -.42 
850-400 -.03 -.02 -.14 
850-300 -.14 -.37 -.06 
850-200 -.26 -.15 -.16 
850-100 .13 .ll .09 

b. Mixing Ratio 

Pressure Intervals 3h 6h 9h 

850-800 .34 .42 .50 
850-700 .04 . 27 .40 
850-600 .06 -.14 -02 
850-500 -.04 -.04 -.20 
850-400 -.22 -.03 -.30 

c. Geopotential Height 

Pressure Intervals 3h 6h 9h 

850-800 -95 
850-700 .79 
850-600 .72 
850-500 . 53 
850-400 . 33 
850-300 -24 
850-200 -20 
850-100 . 26 

-98 .97 
.91 .78 
-86 -65 
.67 -49 
.29 . 20 
.ll .ll 
.lO .15 
.02 -09 
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Table 10. (Continued) 

d. Divergence 

Pressure Intervals 3h 6h 9h 

850-800 
850-700 
850-600 
850-500 
850-400 
850-300 
850-200 
850-100 

-80 ,.73 -53 
-42 .22 -32 
-37 -28 .21 

-.20 -.12 -.05 
-.14 -.05 -.23 
-.13 -.16 -.ll 
-.14 -.17 -.48 
-.lO -.ll -.lO 

e. Vertical Motion 

Pressure Intervals 3h 6h 9h 

850-800 -96 :95 -82 
850-700 -78 .67 -49 
850-600 -47 .39 -20 
850-500 .25 -25 .16 
850-400 .17 -20 .12 
850-300 .05 -13 .17 
850-200 .37 -12 .16 
850-100 .12 -05 -11 

f. Vorticity 

Pressure Intervals 3h 6h 9h 

850-800 .72 -77 .67 
850-700 .23 . 26 .24 
850-600 .21 -24 .20 
850-500 .21 -22 .26 
850-400 .lO -21 .13 
850-300 -.14 -.06 -.ll 
850-200 -.25 -.15 -.09 
850-100 -.22 -.ll -.05 
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lower layers, except at 800 mb and above the tropopause, while corre- 

lations were more variable in time in the mid troposphere. 

Relationships for fields of mixing ratio were established only in 

the lower layers of the atmosphere and coefficients changed sign above 

600 mb. Differences changed sign in the mid troposphere, particularly 

in areas of strong convection where losses of moisture in lower 

layers due to convergence and lifting and subsequent increases in 

moisture content aloft, were not represented by assuming a linear 

change in mixing ratio over a 12-h period. Coefficients increased in 

magnitude with time at most levels and were largest for 9-h dif- 

ferences. Area1 coverage of strong convective activity also increased 

with time within the 12-h interpolation period which suggests that 

the vertical structure of mixing ratio differences were largely 

influenced by convection. 

Vertical relationships between the 850-mb field of geopotential 

height differences and fields at other levels were very well estab- 

lished at all levels of the atmosphere, particularly to the 400-mb 

level. This suggests good vertical continuity for geopotential height 

differences, and centers were found to be nearly vertically stacked 

in the atmosphere with only slight slopes above 400 mb. The good 

vertical extent of these centers also indicates that nonlinear changes 

in geopotential heights were related to disturbances in the large- 

scale flow, such as short waves or troughs. Coefficients were largest 

for 6-h differences in the lower layers, and for 3-h differences in 

the mid and upper troposphere. 

Correlations between differences in divergence, vertical motion, 

and vorticity were well-established in the vertical. Vertical motion 

relationships were especially good, as centers of vertical motion were 

nearly vertically stacked in the atmosphere. Relationships for fields 

of divergence differences changed sign above the level of non- 

divergence which was above 500 mb for AVE IV, although differences 

themselves changed sign at or above 500 mb. Overall, correlations for 

divergence and vertical motion were best established for 3-h dif- 

ferences up to 400 mb and were more variable with time above that 
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level. Vorticity correlations showed a marked decrease from the lower 

to mid troposphere and remained nearly constant with height to the 

upper levels of the atmosphere where differences were negatively 

correlated with those at 850 mb. The decrease in correlations from 

lower to mid layers may be due to large increases in differences with 

altitude from 850 to 700 mb in areas associated with short waves and 

strong convective activity (centers A and G of Table 9). In these 

areas, large changes in the vorticity field which were not measured 

by linear interpolation were occurring fn the mid to upper troposphere, 

which may also explain the small change in the coefficient with 

altitude for these upper layers, These results also suggest that grid 

points associated with the passage,of short waves and thunderstorms may 

have been a dominating influence on 

coefficient, 

the calculation of the correlation 

The fact that vertical correlat 

not as strong as for other variables 

differences were not continuous with 

ions for some of the variables were 

does not imply that centers of 

altitude. Individual centers for 

each variable were examined, and Tables 4 through 9 clearly indicate 

that centers were well-established at most levels of the atmosphere. 

Analysis of individual centers also indicate that centers of variables 

for which correlations were poor sloped with height, while centers for 

which correlations were good stacked nearly vertically in the atmos- 

phere. 

Position plots of selected centers of temperature, vertical 

motion, and vorticity differences at various pressure levels are shown 

in Figs. 25 through 27. Numbers designate selected pressure levels 

while letters refer to centers identified on constant pressure charts. 

Fig. 25 shows that temperature difference centers sloped in the 

vertical. Most centers sloped toward the west and northwest, par- 

ticularly those in the colder air. Center C, for example, which was 

located behind the polar front and the surface low in Kansas (Fig. 11), 

sloped with the frontal zone in the vertical. Center A, located over 

Indiana (Fig. ll), was the only center which sloped eastward. This 

center correlated well in space with a thermal trough in the lower 
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2100 GMT 

Fig. 25. Position plots of centers of temperature differences (Fig. 
11) at various pressure levels. Surface and 700~mb fronts superim- 
posed. 
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Fig. 26. Position plots of centers of vertical motion differences 
(Fig. 19) at various pressure levels. 
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Fig. 27. Position plots of centers of vorticity differences (Fig. 
21) at various pressure levels. 
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layers, but changed sign and sloped eastward in the mid to upper 

troposphere where a warm thermal pocket was established. Slopes for 

temperature difference centers in the warmer air (center B) were not 

as pronounced as those for centers in the colder air or along fronts. 

However, the slopes of temperature centers in the vertical could ex- 

plain why correlations between fields of differences at the 850-mb 

level and fields at levels above decreased rapidly with height and 

changed sign in the mid troposphere. 

Slopes of vertical motion differences,shown in Fig. 26, were much 

less pronounced than were those for temperature. The centers stacked 

nearly straight up in the vertical, especially to 500 mb which ex- 

plains the good correlations between fields of differences through 

most levels of the atmosphere and the 850-mb field. Although plots 

in Fig. 26 show centers sloped mostly eastward and southward, other 

centers sloped randomly. Vorticity centers stacked nearly vertical 

with altitude up to around the 400-mb level, and sloped very slightly 

westward (Fig. 27). Slopes for most centers increased above 400 mb 

with a distinct westward or northwestward shift in the centers at 300 

mb. This change in slope may be due to the fact that the short wave 

in the Ohio Valley stacked nearly vertical from 700 to 400 mb, and 

shifted westward at 300 mb. Center G (Fig. 21) was vertically stacked 

at all levels in conjunction with the second short wave which moved 

into the grid network 6 h into the interpolation period and was 

vertically stacked to the upper layers of the atmosphere. These re- 

sults further suggest a strong relationship between nonlinear changes 

in synoptic variables over time intervals shorter than 12 h and 

synoptic features,and further document results obtained from analysis 

of constant pressure charts. 

C. Statistical Analysis of Differences 

The average, standard deviation, and extreme values of the 

differences between measured and interpolated data at 3, 6, and 9 h 

after the initial time of the 12-h interpolation period were calcu- 
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lated for each‘variable and pressure level. The average difference 

at each pressure level represents a bias in the interpolated data 

relative to the measured data. If vertical variations of the biases 

over 3, 6, and 9 h are similar, their effect could be removed by 

applying a correction factor that would be pressure dependent. On the 

other hand, if variations of the biases in time were similar at each 

pressure level, a time-dependent factor might be applied to remove the 

biases. 

The standard deviations represent the variation or dispersion of 

magnitudes of differences at a pressure level. If the mean of a field 

of differences is close to zero, the standard deviation is a good ap- 

proximation to the RMS difference between measured and linearly 

interpolated data. Large values of the standard deviation imply large 

variations in the magnitude of the differences, and are interpreted 

as errors in the interpolated data. Extreme values provide an indi- 

cation of the variability of each data set or the range of values of 

the data set. 

Statistical parameters for differences between measured and 

interpolated values computed 3, 6, and 9 h after the initial time of 

the 12-h interpolation period are presented in Table 11. Meteorologi- 

cal variables and selected pressure levels are listed on the left, and 

statistical parameters and time intervals are listed along the top. 

Mean values for most variables were not very large and in some 

cases close to zero. In fact, means for most fields of differences 

for derived parameters were an order of,magnitude smaller than observed 

or actual values measured in the atmosphere. This does not indicate 

that interpolation was an accurate estimation of the actual kinematic 

structure of the atmosphere since standard deviations of the dif- 

ferences were quite large. Mean values for some variables were 

systematic in time and in the vertical, while mean values for other 

variables did not display systematic tendencies. Averages for temper- 

ature differences were largest at 6 h for most levels of the atmosphere 

above 850 mb, and changed sign from negative in the lower layers to 

positive in the mid to upper troposphere. Mean values of geopotential 
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Tilhh! 11. Statistics for diffcrcnccn bctwcrn nbscrvcd and linearly intcrpolatcd values of synoptic variables. 

Geopotential 850 9.2 

Wind Speed 850 
(m s-11 

.3 I 2.2 
700 -1.2 2.7 

j: 7.c -9.9 -.l 
1 7.2 -7.3 -.2 

500 .2 2.4 :/ 9.1 -6.6 .4 
300 -.l 3.7 1 11.9 -9.7 .l 
100 -.2 6.0 

--1 
24-C -13.7 -1.2 

Wind 850 .7 29.2 : 161 -122 -2.7 
Direction 700 -1.7 25.0 80 -112 -9.7 
(cegrecs) 500 -1.7 i 23.4 167 -171 -8.1 

300 -23 -1.4 
100 -18 -2.1 

u component 850 .l 
(m .5-l) 

2.1 8.6 -4.8 2 
700 -1.1 2.5 5.7 -7.5 -;:1 
500 -.4 2.7 9.1 -6.2 -.4 
300 -.2 3.9 10.2 -12.6 4 
100 0 5.8 25.5 -14.1 -25 

850 .l 2.7 9.2 -10.0 3 
700 0 3.3 8.7 -11.1 24 
500 . 'I 3.0 8.9 -8.1 2.0 
300 .l 3.7 9.6 -12.3 .9 
100 -.5 2.7 6.2 -7.1 .l 1 

I 

1.3 3.4 -4.0 .l 1.0 3.0 -4.5 
.8 j 3.8 -1.4 .2 .8 3.0 -1.9 
.9 3.7 -1.5 .s I .8 4.1 -1.6 
.8 : 2.6 -2.2 .9 2.6, -2.7 

1.5 ' 4.2 -3.8 
.3 ;I 
l S -g 2.8 -1.8 : / 

1.6 5.4 -4.3 .l 1.2 3.9 -6.8 
1.3 2.5 -4.2 

i' 
2 1.4 4.8 -4.6 

.7 1.7 -2.0 .6 1.9 -1.5 

9.0 30.9 -13.9 6.7 6.1 23.21 -6.2 
7.9 35.2 -14.2 7.0 5.2 19.3 -7.6 
8.0 35.3 -7.7 9.4 7.1 33.5 -11.2 

13.1 54.2 -20.5 14.9 12.2 52.6 -27.1 
23.2 97.1 -26.0 27.3 20.0 68.2 -24.8 

2.9 7.5 -10.9 .l 2.1 5.9 -10.7 
3.3 10.6 -9.8 .8 2.5 8.1 -4.6 
2.9 10.7 -7.6 1.2 2.0 6.9 -4.6 
4.2 14.8 -12.3 -.l 3.2 8.3 -13.0 
5.2 16.3,-15.3 -.l 3.9 10.6, -8.5 

41.4 174 '-176 -6.6 29.7 148 -149 
2R.9 107 -132 .6 20.1 121 -49 
18.3 30 -117 -7.0 11.9 35 -42 
11.5 42 -28 -2.8 10.1 36 -43 

7.3 16 -31 -3.8 6.9 25 -18 

3.1 15.7 -7.6 .7 2.7 16.6 -6.1 
3.2 7.8 -11.3 .3 2.9 8.5 -7.3 
2.4 7.6 -6.3 .6 2.2 7.3 -6.7 
4.4 13.3 -14.0 -.4 3.4 9.4 -12.0 
5.0 16.9 -15.1 -.5 4.0 10.3 -9.1 

3.5 8.9 -17.4 -.3 2.4 8.4 -13.5 
3.8 13.1 -13.7 .6 2.7 8.1 -9.5 
3.8 15.0 -10.1 1.7 2.8 9.5 -9.9 
5.4 15.5 -16.0 1.3' 4.2 17.4 -8.4 
2.9 10.7 -7.2 1.1 2.1 6.7 -4.1 



Table 11. (continued) 

3h 6h 9h 

Parameter p (mb) Mean St. Dev. Max Min Mean St. Dev. Max Min Mean St. Dev, Max Min 

Divergence 850 0 1.3 4.0 -5.5 0 1.4 5.4 -5.3 0 1.0 3.0 -3.5 
(10-5,-l) 700 -.l 1.2 4.9 -3.1 -.l 1.6 4.3 -4.8 -.3 1.4 4.1 -4.4 

500 -.2 1.3 3.0 -4.3 -.2 1.4 3.1 -4.0 0 1.1 3.4 -3.4 
300 -.3 1.4 5.2 -4.0 -.l 1.6 5.4 -5.6 -.2 1.3 2.9 -4.5 

Vertical 850 -.l 1.2 3.9 -5.7 -.l 1.3 5.2' -5.2 -.2 .9 3.5 -2.3 
Motion 700 0 1.8 6.4 -8.2 -.l 2.1 0.7 -8.5 -.3 1.5 3.6 -5.2 

Cub s-l) 500 -.2 2.1 7.7 -7.3 0 2.6 10.5 -7.4 -.2 1.9 1.5 -5.6 
300 -.5 1.9 4.3 -7.0 -.3 2.3 5.4 -7.5 -.4 1.8 5.9 -5.6 

Relative 850 .1 1.1 3.9 -3.9 .4 1.5 3.9 -3.9 .2 1.1 3.1 -3.0 

v;;~'~~:~) 700 500 -.3 .2 1.5 1.6 4.8 6.6 -2.8 -4.9 -.2 .l 1.9 2.0 6.9 6.9 -4.3 -4.9 .l .l 1.3 1.4 4.5 5.7 -2.9 -3.5 
300 -.3 1.8 4.5 -5.3 -.5 2.9 9.0 -8.6 -.5 2.1 7.5 -6.8 

Advection of 050 0 .5 2.3 -2.2 .l .6 2.4 -2.0 0 .4 1.3 -2.1 

y@) 700 500 .l .l 1.2 .6 2.7 3.9 -4.5 -3.6 .l .l 1.4 .9 5.1 7.4 -2.4 -4.3 .l .l .7 .8 3.0 3.0 -3.1 -2.5 
300 0 2.1 4.8 -6.5 .2 2.4 8.0 -7.2 .l 1.9 7.4 -6.8 

Advection of 850 -2.7 5.2 32.5 -19.0 .4 3.5 13.4 -11.4 -.2 4.6 8.5 -15.2 
Temperature 700 -.l 3.3 9.7 -14.2 .6 3.4 13.7 -14.4 .2 5.4 27.2 -23.1 

(lo-50 C 9-l) 500 .8 5.2 17.8 -11.5 .5 5.9 29.7 -16.4 .6 5.8 28.1 -18.9 
300 1.1 6.9 29.5 -24.8 1.0 7.3 17.6 -31.0 -.8 5.7 16.0 -18.2 

Convective 900-7oc .9 1.9 6.1 -3.9 .3 2.1 5.5 -5.3 .3 .2.0 7.1 -5.3 
Instability 700-50C .3 

(10'2 Oc lnb-$900-5oc .3 
1.7 5.3 -4.3 .2 1.7 4.4 -3.4 .4 2.1 7.4 -7.0 
.6 2.8 -2.0 .l .I 2.6 -2.4 0 .7 1.9 -3.0 

I I I 



height differences were also largest at 6 h and increased with altitude 

at each time interval. This can be expected since averages of temper- 

ature differences were positive from 700 mb upward, and geopotential 

height is a function of the vertical integral of mean temperature. 

Magnitudes of the average differences for wind direction were 

largest in the mid troposphere at 3 and 6 h and at 850 and 500+over 

9 h. Magnitudes of 6-h means were greatest. Mean differences for the 

v-component of velocity were largest at the 500-mb level and at 6 h, 

while those for the u-component and wind speed were more variable both 

in time and in the vertical. 

Mean values for differences in divergence, vertical motion, 

vorticity and vorticity advection were for the most part consistent in 

time and showed little variation in the vertical. Vorticity means 

changed sign at 500 mb or 300 mb for all time periods. Means for 

temperature advection and stability differences were more variable. 

Standard deviations of the differences were very systematic in 

time and with altitude. Deviations for differences in temperature 

(below the tropopause), mixing ratio, and wind direction decreased 

with altitude, while deviations for geopotential height, wind speed, 

vorticity, and the advection of vorticity and temperature increased with 

altitude. Dispersions of vertical motion differences i'ncreased with 

altitude up to 500 mb and decreased near the tropopause, represented 

by the 300-mb surface, while those for divergence varied little with 

altitude. 

Standard deviations were largest for 6-h differences for all 

variables with the exceptions of temperature (below the tropopause) and 

mixing ratio where the largest deviations were found after the first 

3 h of the interpolation period. Near the tropopause, represented by 

the 300-mb surface, temperature difference variations (from the mean) 

increased in time, and peaked after 6 h for layers above the tropo- 

pause. Overall, standard deviations of the differences were larger 

than the means, especially for wind direction. Standard deviations 

for geopotential height differences, however, were less than the means. 
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Extreme values of the differences were, for the most part, three 

to four times as large as the standard deviations for most variables. 

Extremes of wind direction, however, were four to five times the 

standard deviation in the low to mid troposphere. Vertical varia- 

tions of the maxima and minima values for most variables were analogous 

to that for the standard deviation. 

d. Comparison of Differences in Convective and Nonconvective Areas 

Statistical methods were used to compare differences between 

measured and interpolated values of synoptic variables in convective 

and nonconvective areas. In this study, convective areas were defined 

by grid points with MDR r 4, which were areas of strong convection 

(thunderstorms) with maximum rainfall rates in excess of one inch per 

hour. The mean (x),standard deviation (ox), and standard deviation 

of the mean (ax) were computed for each variable for convective and 

nonconvective regions at each time interval, and results are presented 

in vertical profiles. Horizontal bands were constructed for f 2'0~ to 

show dispersion of the mean values. At levels where the band about 

the average contained zero, the differences may be due to random 

variation. 

Fig. 28 shows the average and standard deviation for differences 

between observed and linearly interpolated values of temperature in 

convective and nonconvective areas. At most levels, averages were 

larger in magnitude in convective regions than nonconvective regions, 

especially for differences computed 3 and 6 h after the initial time 

of the interpolation period. General shapes of the profiles for both 

regions were quite similar with negative differences in the lower-most 

layers and positive differences above 800 mb. Average differences 

decreased and became negative above the tropopause (250 mb) in con- 

vective regions and increased again above 150 mb. Largest differences 

between profiles of average differences for each region were found in 

the lower-most layers. Standard deviation profiles were similar in 

shape in both areas. However, larger deviations of the mean values 
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Fig. 28. Profiles of the average and standard deviation of differ- 
ences between observed and linearly interpolated values of temperature 
("Cl computed over 3-, 6-, and 9-h intervals for convective and non- 
convective areas. Horizontal bands are drawn for +2u8. 
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were found in areas of convective activity. 

Profiles of the averages for differences in mixing ratio in 

convective and nonconvective regions are presented in Fig. 29. In 

areas of strong convection, average differences were negative in the 

lower layers with largest magnitudes around 750 mb, the approximate 

location of cloud bases. Values decreased in magnitude above the 750- 

to 700-mb layer and became positive above the 650-mb surface. Analysis 

of the moisture budget for AVE IV indicated moisture losses in the 

sub-cloud layers and moisture gain aloft in areas of strong convection 

(Scott and Scoggins, 1977). The resulting differences or nonlinear 

changes in mixing ratio in areas of strong convection could be an 

indication of such moisture losses in lower layers and moisture gain 

in the upper layers resulting from vertical transport of moisture up- 

ward by vertical motions. This-also suggests that assuming linearity 

in the mixing ratio over a 12-h interval is inadequate to define such 

processes which can occur on a time scale much shorter than 12 h. 

Magnitudes of average differences in areas free of convection were 

smaller than those in convective areas and were more variable with 

height. Standard deviations of individual values were larger for 

convective-free areas, especially in the lower-most layers, and 

decreased with height above about 800 mb. Standard deviations in 

convective regions were largest near 750 to 700 mb and decreased with 

altitude above this layer. Standard deviations of the means were 

smaller in areas free of convection, and Fig. 29 shows that on the 

average, differences in areas free of convection were not signifi- 

cantly different from zero. 

Profiles of the average and standard deviations of differences in 

geopotential height (Fig. 30) show that average differences were 

smaller in convective areas than nonconvective areas in the lower 

layers and slightly larger in convective areas near the tropopause 

(300 to 200 mb). This can be expected since geopotential height is 

a function of the vertical integral of mean temperature, and tempera- 

ture differences were more negative in lower layers and more positive 

in upper layers in convective regions than nonconvective regions. 
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tal bands are drawn for 220;. 

96 



loo- 

- 
g 

200' 

: 300, 

2 
E 04 500' 

700' b I 
850' I w 

I I I I I I I I 
-20 -10 0 10 20 30 40 50 60 

Geopotential height differences (g?m) 
Convective Areas 

Geopotentialheightdifferences 
(wm) 

Nonconvective Are'as 

c. 9 h 

Fig. 30. (continued) 

97 

I - 



Standard deviations of individual values in convective regions were 

larger than in nonconvective regions in lower layers and smaller than 

nonconvective areas aloft. Profile shapes were very similar in both 

areas with average and standard deviations increasing with altitude. 

Average values were larger than the standard deviation, except in 

lower layers in areas of strong convection. 

Profiles of the average and standard deviation of differences in 

vertical motions computed from observed and interpolated winds are 

presented in Fig. 31. Magnitudes of average differences and standard 

deviations were larger for convective areas for 3- and 6-h differ- 

ences, while profiles for convective and nonconvective areas were 

similar for 9-h differences. Average values in convective-free areas 

were negligible for all time periods. 

While profiles for nonconvective regions were fairly consistent 

in time, those for convective areas differed over each time interval. 

Fig,. 31 shows that differences were positive in areas of strong con- 

vection after 3 h into the interpolation interval and negative after 

6 h. At 1500 GMT, 24 April (3 h), very strong convective activity was 

found over Arkansas (MDR=8) with moderate-to-strong convection in 

western Kentucky (MDR=4). The activity over Arkansas, however, had 

decreased over the 3 h interval and dissipated completely after 6 h. 

An intense center of positive vertical motion differences was centered 

over Arkansas (Fig. 19) and indicated decreases in the amount of 

upward motion that could not be measured by interpolation. Differ- 

ences over the area of increasing intensity in Kentucky were smaller 

in magnitude. Thus, average values shown in Fig. 31 were positive 

after 3 h. Standard deviation profiles show large variation in the 

data, however, especially in the lower layers. 

After 6 h, convection which was increasing in intensity was 

located mostly in the form of a squall line over central Kentucky and 

Tennessee, and along the warm front in eastern Kansas. Negative dif- 

ferences of as much as 3 pb s-l, resulting from increases of upward 

motion not accounted for by interpolation, were associated with the 

squall line in Tennessee (Fig. 19), while smaller differences were 
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found in Kansas. Area1 coverage of convective activity also was much 

larger in Tennessee than in Kansas, and the average negative values 

shown in Fig. 31 suggest the dominance of this area in the calcula- 

tions. The large standard deviations reflect the large amount of 

variability in the data, particularly at the 500- and 300-mb levels. 

After 9 h, convection was more widespread. Another squall line 

developed in eastern Kansas and Oklahoma, while the line in Tennessee 

moved slightly eastward. Strong convective activity aiso broke out in 

South Dakota and in the Ohio Valley. Fig. 31 shows that magnitudes 

of the vertical motion differences in convective areas were much 

smaller after 9 h than they were at previous time periods. In fact, 

the vertical profiles in convective and nonconvective regions were 

nearly identical, except for larger deviations in areas of convection. 

This can be explained first by the fact that centers of vertical 

motion differences were much less intense after 9 h, suggesting that 

perhaps interpolation is more accurate over larger intervals. 

Secondly, because convective activity was more widespread after 9 h, 

profiles were not as representative of one particular area, or were not 

dominated b.y one area, as were those for 3- and 6-h differences. 

This suggests that differences at each point throughout the interpola- 

tion interval also were dependent upon initial and final conditions 

at each particular point. In Oklahoma and Arkansas, for instance, 

heavy activity occurred at both endpoints of the interpolation period 

with large amounts of upward motion. Interpolation favored these 

conditions throughout the entire 12-h period. Therefore, although 

convective activity was increasing in intensity in this area at 9 h, 

differences were positive because interpolation indicated more upward 

motion than was actually found in association with convection because 

conditions at the initial and final times of the 12-h period were un- 

favorable for convection. 

Fig. 32 shows that average differences for vorticity were larger 

in convective than nonconvective areas. Positive differences of 
lo-5 s-l to 2xlo-5 s-' were found in the areas of strong convection 

at 3.and 6 h, particularly from the 700- to 300-mb levels, and indi- 
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cated increased cyclonic circulation that was not accounted for by 

linear interpolation. Average differences were mostly negative in 

nonconvective areas with largest magnitudes in the mid to upper 

troposphere. Nine-hour average differences were smaller in magnitude 

than previous time intervals and not significantly different from zero, 

'In nonconvective areas, average differences were negligible at most 

levels of the atmosphere. Profiles were nearly identical over all 

time periods in nonconvective regions. 

Standard deviation profiles were similar in both areas for 6- 

and 9-h differences and indicate a large amount of variability in the 

data. Largest deviations were found in the upper layers of the 

troposphere (near 300 mb) except after 3 h in areas of strong con- 

vection, where largest values were found near 700 mb. 

Averages and standard deviations of differences in vorticity 

advection for convective and nonconvective areas are shown in Fig. 33. 

Once again, profiles show good consistency in time for nonconvective 

areas. Average differences were negligible, while standard deviations 

increased with height at all time periods. 

In areas of convection, differences in the profiles over each 

period reflected the overall tendency of the intensity of convection 

over the period. At 6 and 9 h, convection was generally increasing 

in intensity. Positive average differences, which were largest in 

the mid to upper troposphere, indicate increases in positive 

vorticity advection (PVA) that were not accounted for by assuming 

linearity of the wind field over a 12-h period. After 3 h, however, 

convection was generally decreasing in intensity, An area of intense 

thunderstorms over Arkansas began to decrease in intensity over the 

period, and had completely dissipated by 6 h. Average differences 

were negative as a result of increasing amounts of negative advection 

that was not accounted for by interpolation. These results further 

suggest the importance of PVA in the mid to upper troposphere in the 

initiation, intensification, and maintenance of convective storms, 

Standard deviations in areas of strong convection were generally 

larger than in nonconvective areas, and increased with altitude except 
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for 3-h differences when the largest deviations were found around 

700 mb. 

Statistics for differences between measured and interpolated 

values of temperature advection are presented in Fig. 34. Profiles 

show that average differences and standard deviations in areas free 

of convection were fairly systematic in time. Average differences 

were very small at all levels, and standard deviations increased with 

altitude except from 850 to 700 mb. 

In areas of strong convection, differences were positive in the 

lower layers (above 850 mb) of the atmosphere and negative aloft after 

3 and 6 h. This was the result of increasing amounts of warm,air 

advection in lower layers and cold air advection (or sometimes less 

warm air advection) aloft that were not accounted for by linear 

interpolation. These effects suggest decreasing amounts of stability 

through a deep layer of the atmosphere in areas of strong convection. 

However, the larger differences at 700 mb as compared to 850 mb show 

more warm air advection at the 700-mb level and suggest a more stable 

layer from 850-700 mb, which may be the result of thunderstorms inter- 

acting with their environment. Profiles of standard deviation were 

fairly systematic in time in areas of strong convection and similar 

in shape to those for nonconvective areas. Standard deviations 

generally increased with altitude above 700 mb. 

Statistics for differences in the convective instability index are 

shown in Fig. 35. Average values are indicated by bars and standard 

deviations appear in parentheses beneath each bar. 

Fig. 35 shows that on the average nonlinear increases in 

stability occurred in convective-free areas while decreases in stabil- 

ity were found in areas of thunderstorms. The increasing stability 

found in areas of convection after 3 h, particularly in the lower layer 

(900-700 mb), could attribute to the overall dissipating activity 

over this time interval. This further indicates the importance of 

instability in the lower layers of the atmosphere in the maintenance 

of thunderstorms. Although the graphs indicate that thunderstorms 

generally occurred in an unstable environment, the large amounts of 
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instability found in convective-free regions (Fig. 24) suggest that 

the release of instability resulting in thunderstorms must be triggered 

by other processes such as kinematic features. 

Average values of differences in convective instability were 

generally an order of magnitude smaller than typical observed values 

of convective instability. Standard deviations, however, were three 

to as much as ten times the mean values, indicating large variability 

in the data. Average values and standard deviations were larger in 

magnitude in nonconvective than in convective regions. 

e. Interrelationships between Differences and Synoptic Conditions 

Analysis has indicated that interrelationships between nonlinear 

changes in synoptic variables existed and that some relationships may 

be important in the development, maintenance, and dissipation of 

thunderstorms. During the 12-h interpolation interval chosen in this 

study, severe weather occurred mainly in the form of two active squall 

lines. While the first of these areas of thunderstorms dissipated 

over southern Missouri and Arkansas during the first 6 h of the 

period, the second line intensified rapidly between 1800 and 2100 GMT 

as it passed through central and eastern Kentucky and Tennessee. 

Centers of nonlinear increases in low-level wind convergence and 

upper-level divergence were associated with the squall line in 

Tennessee, along with upward vertical motion. Decreases in stability 

not accounted for by interpolation also were found in this region. 

Instability also was found in convective-free regions which suggests 

that the release of instability, essential in the production and 

maintenance of thunderstorms, must be triggered by kinematic processes. 

Figures 36 and 37 show time cross sections of differences between 

measured and linearly interpolated values of vertical motion and 

temperature computed for the center of four surrounding grid points in 

east-central Tennessee and in southern Missouri and northeast Arkansas. 

Maximum intensity of convection occurred at around 2100 GMT in eastern 
Tennessee (MDR=6). Fig. 36a shows that differences changed in sign from 

111 



100 

'200 

2300 
-5 

E 2 500 
* 
t 04 

700 
850 

vGh 9h 

101 

201 

0‘ 

O- 

D- 

o- 

3- 

3’ 

c 

1 

1 1 - 

3h 6h 9h 
a. Vertical motion differences (ub s -5 b. Temperature differences ("C) 

Fig. 36. Time cross sections of vertical motion and temperature 
differences in central and eastern Tennessee. 

lOOr 100 

200 

- 300 
% / 

c I , I- I 
3h 6h Yh 

a. Vertical motion differences (pb ~"1 

I I --L I 
3h 6h 9h 

b. Temperature differences ("C) 

Fig. 37. Time cross sections of vertical motion and temperatnre 
differences in SE Missouri and NE Arkansas. 

112 



positive to negative in conjunction with the passage of an upper- 

level short wave around 1800 GMT. The rapid change in sign indicates 

large amounts of increases in upward motion that were not accounted 

for by linear interpolation occurred just prior to and during thunder- 

storm development. These nonlinear increases in low-level convergence 

and upward vertical motion could have been an important mechanism 

releasing the instability necessary for the maintenance and intensi- 

fication of the thunderstorms associated with the squall line. 

Results have also shown that nonlinear increases in vorticity, 

indicating increased circulation and lifting due to convergence, were 

found in these areas of strong convection. Large amounts of positive 

vorticity advection, unaccounted for by linear interpolation, also 

were found in the mid to upper troposphere prior to and during con- 

vective activity. 

In convective-free areas and regions of thunderstorm dissipation, 

significant amounts of instability were present but there existed no 

mechanism to release the instability necessary for further develop- 

ment or maintenance of thunderstorms. Nonlinear increases in downward 

motion suppressed the release of instability, and increased divergence 

cut off the moisture supply into these convective systems. Fig. 37a 

shows large increases in downward motion in the Missouri-Arkansas area 

which may have been largely responsible for the suppression of the 

release of instability and the consequent dissipation of thunderstorm 

activity in this area over the first 6 h of the interpolation period. 

Large amounts of negative vorticity advection, not accounted for by 

linear interpolation, also were found in these areas, particularly in 

the mid to upper troposphere. 

Figs. 36 and 37 suggest a relationship between differences 

(observed-interpolated) in vertical motion and temperature. At most 

times when nonlinear increases in upward vertical motion occurred, 

nonlinear decreas.es in temperature were observed, probably the result 

of cooling due to lifting. When greater amounts of downward motion 

than was measured by interpolation were observed, higher temperatures 

were generally observed than indicated by interpolation, except near 
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the surface in areas of cloudiness such as Missouri and Arkansas (Fig. 

37). These nonlinear increases in temperature may have been, at least 

in part, the result of adiabatic warming due to subsidence. 

Fig. 38 shows similar relationships between differences for 

vertical motion and temperature. Nonlinear decreases of temperature 

correlated fairly well in space with regions of nonlinear increases 

in vertical motion, while increases in temperature again were found 

in areas of subsiding air. 

The fact that the intensity of vertical motion differences did 

not relate to the intensity of temperature differences suggest that 

nonlinear changes in temperature also were caused by other factors such 

as temperature advection. In central and eastern Tennessee, for 

example, cold air advection unaccounted for by linear interpolation, 

was found at most levels. In Missouri and Arkansas warm air advection 

may have been an important factor‘in increasing temperatures. 

Differences between measured and linearly interpolated values of 

equivalent potential temperature were found to correlate well in space 

with differences in mixing ratio at all levels up to 500 mb. Non- 

linear changes in mixing ratio were negligible above that level. 

Fields of equivalent potential temperature and mixing ratio differences 

are presented in Fig. 39 for the 900-mb level at 1800 GMT, 24 April. 

The good correlation in space between the two fields suggests that 

nonlinear changes in moisture were largely responsible for the varia- 

bility in equivalent potential temperature and, therefore, the 

variability in stability. These relationships were well-established 

at all time periods within the 12-h interpolation interval. 

In summary, nonlinear changes in synoptic variables were related, 

with spatial distributions correlating well with each other at all 

time periods. Such relationships between variables indicate processes 

occurring in the atmosphere that induce large variability that cannot 

be accurately resolved by use of 12-h data, and that this variability 

may be important in the development of severe weather and thunder- 

storms. 
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Fig. 39. Differences between measured and interpolated values of 
equivalent potential temperature and mixing ratio computed 6 h into 
the interpolation period for the 900-mb level. 

116 



f. Significance of Differences: The Nonlinear Coefficient 

As shown in Fig. 10, differences between observed and linearly 

interpolated values of synoptic variables over time intervals within 

the 12-h interpolation period also represent the amount of change in 

a variable over the interval that is not accounted for by an assumed 

linear change. This unaccounted for change was defined as the non- 

linear change of the variable over the particular time interval. 

A coefficient of nonlinearity was computed from Eq. (4) in order 

to determine the significance of nonlinear changes over 3-, 6-, and 

9-h intervals, within a 12-h period between regular synoptic observa- 

tions, relative to an observed change over the same intervals. Av- 

erage coefficients for selected variables at each pressure level were 

computed, and results are presented in Fig. 40. 

Profiles show that on the average nearly 80 to 100% of an observed 

change in temperature, mixing ratio, geopotential height, and vertical 

motion over a 3-h interval was unaccounted for by an assumed linear 

change based upon 12-h sounding information. Coefficients decreased 

slightly after 6 h and more rapidly at 9 h at most levels for all 

variables except temperature. Variations in time of the nonlinear 

coefficient for temperature were more variable with altitude. The 

largest decreases were found between 3 and 6 h in the lower and upper 

troposphere, while decreases between 6 and 9 h were greatest in the 

middle levels. Above the tropopause, temperature coefficients 

increased slightly from 3 to 6 h. Coefficients for mixing ratio were 

largest of all variables for each time period indicating that linear 

changes in mixing ratio were more inadequate in approximating actual 

changes than for any other variable. 

Although the nonlinear coefficient decreased in time, magnitudes 

were still quite large after 9 h. Profiles indicate that 38 to as much 

as 75% error was possible in the low and mid troposphere by assuming 

linear changes in synoptic variables with even larger errors (95%) 

possible above the tropopause. 
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The overall decrease in the nonlinear coefficient as the time 

interval increases suggests that, on the average, the change in t was 

the dominating factor determining the value of the coefficient in 

Eq. 4, and indicates that as the time interval increases, a linear 

change accounts for an increased amount of the observed change over 

the same time interval. 

The results here may relate to other methods utilized in many 

meteorological studies that are similar in principle to linear temporal 

interpolation, such as linear extrapolation of systems in space over 

a 12-h period. Although extrapolation involves the movement of 

spatial trends of variable changes, rapid development of these systems 

and changes in their structure over short time periods are often un- 

resolved. Many of the sub-synoptic processes or systems that are 

important in the development of convective activity have a time scale 

shorter than 12 h, and their effects on the variability of atmospheric 

structure over such short intervals cannot be defined by methods of 

interpolation and extrapolation based upon 12-h data. The increasing 

ability over larger time intervals of linear changes in approximating 

actual changes over the same intervals, however, may explain why 

extrapolation techniques are more successful in forecasting for periods 

of 12 h than for short time periods, such as a 3 or 6 h. Neverthe- 

less, the use of 3-h rawinsonde data obviously allows a better under- 

standing of the variability of atmospheric variables over short time 

periods, and thereby allows better resolution of convective and sub- 

synoptic systems than is obtained with 12-h data. 
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6. SUMMARY AND CONCLUSIONS 

a. Summary 

An examination of nonlinear changes in synoptic variables over 

3-, 6-, and 9-h intervals within 12-h sounding observations has been 

carried out using the unique rawinsonde data from NASA's fourth 

Atmospheric Variability Experiment (AVE IV). A linear change was 

assumed in variables over ,the 12-h period and differences between 

values computed from 3-h sounding data and values interpolated 

linearly were evaluated. Analyzed fields of differences were examined 

to investigate relationships to synoptic features, and Manually 

Digitized Radar (MDR) were utilized to establish relationships between 

nonlinear changes and thunderstorms. Systematic patterns of these 

differences in time and space were examined as well as their vertical 

continuity. The relative importance of nonlinear changes with 

respect to observed changes in synoptic variables also was determined 

by use of a nonlinear coefficient which represented the amount of 

observed change that was not accounted for by a linear change over a 

time interval within the interpolation period. 

b. Conclusions 

The following conclusions were reached from this study: 

1) Nonlinear changes in synoptic variables formed centers or 

systems which appear to be mesosynoptic in nature. These 

changes represented resolution that was lost by assuming 

variables to change linearly through a 12-h period betwee 

sounding observations. 

2) Centers of nonlinear changes were very systematic in time Ullr 

space. Many of the centers extended to the upper atmosphere; 

some sloped with altitude (such as temperature) while others 

stacked vertically in the atmosphere (vertical motion, 

geopotential height). Vertical relations of fields of non- 
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linear changes were verified by inter-level correlations. 

3) The vertical continuity of many of these systems show that 

nonlinear changes are related to synoptic features such as 

frontal zones, short waves, and other sub-synoptic scale 

systems. Analysis of constant pressure charts further docu- 

ments these relationships. Nonlinear changes correlated well 

in space with upper-level troughs and ridges, frontal zones, 

and areas of thunderstorms at all time periods. Largest 

magnitudes of nonlinear changes occurred in these regions. 

4) Statistical profiles of differences between measured and 

linearly interpolated values of synoptic variables in con- 

vective and nonconvective areas showed that, on the average, 

differences or nonlinear changes were larger in magnitude 

in areas of strong convection than in regions free of thunder- 

storms. Standard deviations for most variables were larger 

than mean values in both regions and suggested variation in 

the data sets. 

5) Error analysis showed that the nonlinear changes in most 

variables were larger in magnitude than the computed errors 

of the changes. This implies that these changes can be at- 

tributed to the nonlinearity of synoptic variables and that -. 
the RMS errors in the original data did not have a signifi- 

cant effect on the computations of the changes. Nonlinear 

changes in vertical motions, however, did exceed computed 

errors at and above 500 mb. 

6) Nonlinear changes were associated with areas of convective 

activity. Nonlinear increases in instability were found in 

areas of thunderstorms, and nonlinear increases in low- 

level convergence and upward motion were important in the 

release of instability. In unstable regions free of thunder- 

storms, nonlinear increases in downward motion suppressed 

this release. 

7) Linear interpolation was inadequate in defining variability 

in atmospheric variables over short time intervals, and could 
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not resolve some sub-synoptic scale systems which had life 

cycles less than 12 h. As the time interval increased 

from 3 to 6 to 9 h within the interpolation period, how- 

ever, linear changes accounted for more and more of the 

observed change over the 12-h interval. Since linear 

extrapolation of systems in space over a 12-h period is 

based upon the same principle, these results may explain why 

extrapolation techniques, used in forecasting, are more 

successful over larger time periods than over short time 

periods, such as 3 or 6 h. 
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APPENDIX I 

RAWINSONDE STATIONS PARTICIPATING IN AVE IV EXPERIMENT 

Station Number Location 

208 (CHS 
211 (TPA 
213 (AYS 
220 (VPS 
226 (CEN 
232 (BVE 
235 (JAN 
240 (LCH 
248 (SHV 
255 (VU 
260 (SEP 
261 (DRT 
265 (MAF 
304 (HAT 
311 (AHN 
317 (GSO 
327 (BNA 
340 (LIT 
349 (UMN 
363 (AMA 
402 (WAL 
405 (IAD 
425 (HTS 
429 (DAY 
433 (SLO 
451 (DDC 
456 (TOP 
486 (JFK 

518 (ALB) 
520 (PIT) 
528 (BUF) 
532 (PIA) 
553 (OMA) 
562 (LBF) 
606 (PWM) 
637 (FNT) 
645 (GRB) 
654 (HuR) 
655 (STC) 
662 (RAP) 

11001 (MFS) 

22002 (FSI) 

Charleston, South Carolina 
Tampa, Florida 
Waycross, Georgia 
Apalachicola, Florida 
Centerville, Alabama 
Boothville, Louisiana 
Jackson, Mississippi 
Lake Charles, Louisiana 
Shreveport, Louisiana 
Victoria, Texas 
Stephenville, Texas 
Del Rio, Texas 
Midland, Texas 
Hatteras, North Carolina 
Athens, Georgia 
Greensboro, North Carolina 
Nashville, Tennessee 
Little Rock, Arkansas 
Monette, Missouri 
Amarillo, Texas 
Wallops Island, Virginia 
Sterling, Virginia (Dulles Airport) 
Huntington, West Virginia 
Dayton,Ohio 
Salem, Illinois 
Dodge City, Kansas 
Topeka, Kansas 
Fort Totten, New York (Kennedy 

Airport) 
Albany, New York 
Pittsburgh, Pennsylvania 
Buffalo, New York 
Peoria, Illinois 
Omaha, Nebraska 
North Platte, Nebraska 
Portland, Maine 
Flint, Michigan 
Green Bay, Wisconsin 
Huron, South Dakota 
St. Cloud, Minnesota 
Rapid City, South Dakota 
Marshall Space Flight Center, 

Alabama 
Fort Sill, Oklahoma 
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